Spaces:
Build error
Build error
File size: 28,076 Bytes
81170fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 |
import jax
import jax.numpy as jnp
from jax import random
import flax.linen as nn
from jax import jit
import numpy as np
from functools import partial
from typing import Any
import h5py
#------------------------------------------------------
# Other
#------------------------------------------------------
def minibatch_stddev_layer(x, group_size=None, num_new_features=1):
if group_size is None:
group_size = x.shape[0]
else:
# Minibatch must be divisible by (or smaller than) group_size.
group_size = min(group_size, x.shape[0])
G = group_size
F = num_new_features
_, H, W, C = x.shape
c = C // F
# [NHWC] Cast to FP32.
y = x.astype(jnp.float32)
# [GnHWFc] Split minibatch N into n groups of size G, and channels C into F groups of size c.
y = jnp.reshape(y, newshape=(G, -1, H, W, F, c))
# [GnHWFc] Subtract mean over group.
y -= jnp.mean(y, axis=0)
# [nHWFc] Calc variance over group.
y = jnp.mean(jnp.square(y), axis=0)
# [nHWFc] Calc stddev over group.
y = jnp.sqrt(y + 1e-8)
# [nF] Take average over channels and pixels.
y = jnp.mean(y, axis=(1, 2, 4))
# [nF] Cast back to original data type.
y = y.astype(x.dtype)
# [n11F] Add missing dimensions.
y = jnp.reshape(y, newshape=(-1, 1, 1, F))
# [NHWC] Replicate over group and pixels.
y = jnp.tile(y, (G, H, W, 1))
return jnp.concatenate((x, y), axis=3)
#------------------------------------------------------
# Activation
#------------------------------------------------------
def apply_activation(x, activation='linear', alpha=0.2, gain=np.sqrt(2)):
gain = jnp.array(gain, dtype=x.dtype)
if activation == 'relu':
return jax.nn.relu(x) * gain
if activation == 'leaky_relu':
return jax.nn.leaky_relu(x, negative_slope=alpha) * gain
return x
#------------------------------------------------------
# Weights
#------------------------------------------------------
def get_weight(shape, lr_multiplier=1, bias=True, param_dict=None, layer_name='', key=None):
if param_dict is None:
w = random.normal(key, shape=shape, dtype=jnp.float32) / lr_multiplier
if bias: b = jnp.zeros(shape=(shape[-1],), dtype=jnp.float32)
else:
w = jnp.array(param_dict[layer_name]['weight']).astype(jnp.float32)
if bias: b = jnp.array(param_dict[layer_name]['bias']).astype(jnp.float32)
if bias: return w, b
return w
def equalize_lr_weight(w, lr_multiplier=1):
"""
Equalized learning rate, see: https://arxiv.org/pdf/1710.10196.pdf.
Args:
w (tensor): Weight parameter. Shape [kernel, kernel, fmaps_in, fmaps_out]
for convolutions and shape [in, out] for MLPs.
lr_multiplier (float): Learning rate multiplier.
Returns:
(tensor): Scaled weight parameter.
"""
in_features = np.prod(w.shape[:-1])
gain = lr_multiplier / np.sqrt(in_features)
w *= gain
return w
def equalize_lr_bias(b, lr_multiplier=1):
"""
Equalized learning rate, see: https://arxiv.org/pdf/1710.10196.pdf.
Args:
b (tensor): Bias parameter.
lr_multiplier (float): Learning rate multiplier.
Returns:
(tensor): Scaled bias parameter.
"""
gain = lr_multiplier
b *= gain
return b
#------------------------------------------------------
# Normalization
#------------------------------------------------------
def normalize_2nd_moment(x, eps=1e-8):
return x * jax.lax.rsqrt(jnp.mean(jnp.square(x), axis=1, keepdims=True) + eps)
#------------------------------------------------------
# Upsampling
#------------------------------------------------------
def setup_filter(f, normalize=True, flip_filter=False, gain=1, separable=None):
"""
Convenience function to setup 2D FIR filter for `upfirdn2d()`.
Args:
f (tensor): Tensor or python list of the shape.
normalize (bool): Normalize the filter so that it retains the magnitude.
for constant input signal (DC)? (default: True).
flip_filter (bool): Flip the filter? (default: False).
gain (int): Overall scaling factor for signal magnitude (default: 1).
separable: Return a separable filter? (default: select automatically).
Returns:
(tensor): Output filter of shape [filter_height, filter_width] or [filter_taps]
"""
# Validate.
if f is None:
f = 1
f = jnp.array(f, dtype=jnp.float32)
assert f.ndim in [0, 1, 2]
assert f.size > 0
if f.ndim == 0:
f = f[jnp.newaxis]
# Separable?
if separable is None:
separable = (f.ndim == 1 and f.size >= 8)
if f.ndim == 1 and not separable:
f = jnp.outer(f, f)
assert f.ndim == (1 if separable else 2)
# Apply normalize, flip, gain, and device.
if normalize:
f /= jnp.sum(f)
if flip_filter:
for i in range(f.ndim):
f = jnp.flip(f, axis=i)
f = f * (gain ** (f.ndim / 2))
return f
def upfirdn2d(x, f, padding=(2, 1, 2, 1), up=1, down=1, strides=(1, 1), flip_filter=False, gain=1):
if f is None:
f = jnp.ones((1, 1), dtype=jnp.float32)
B, H, W, C = x.shape
padx0, padx1, pady0, pady1 = padding
# upsample by inserting zeros
x = jnp.reshape(x, newshape=(B, H, 1, W, 1, C))
x = jnp.pad(x, pad_width=((0, 0), (0, 0), (0, up - 1), (0, 0), (0, up - 1), (0, 0)))
x = jnp.reshape(x, newshape=(B, H * up, W * up, C))
# padding
x = jnp.pad(x, pad_width=((0, 0), (max(pady0, 0), max(pady1, 0)), (max(padx0, 0), max(padx1, 0)), (0, 0)))
x = x[:, max(-pady0, 0) : x.shape[1] - max(-pady1, 0), max(-padx0, 0) : x.shape[2] - max(-padx1, 0)]
# setup filter
f = f * (gain ** (f.ndim / 2))
if not flip_filter:
for i in range(f.ndim):
f = jnp.flip(f, axis=i)
# convole filter
f = jnp.repeat(jnp.expand_dims(f, axis=(-2, -1)), repeats=C, axis=-1)
if f.ndim == 4:
x = jax.lax.conv_general_dilated(x,
f.astype(x.dtype),
window_strides=strides or (1,) * (x.ndim - 2),
padding='valid',
dimension_numbers=nn.linear._conv_dimension_numbers(x.shape),
feature_group_count=C)
else:
x = jax.lax.conv_general_dilated(x,
jnp.expand_dims(f, axis=0).astype(x.dtype),
window_strides=strides or (1,) * (x.ndim - 2),
padding='valid',
dimension_numbers=nn.linear._conv_dimension_numbers(x.shape),
feature_group_count=C)
x = jax.lax.conv_general_dilated(x,
jnp.expand_dims(f, axis=1).astype(x.dtype),
window_strides=strides or (1,) * (x.ndim - 2),
padding='valid',
dimension_numbers=nn.linear._conv_dimension_numbers(x.shape),
feature_group_count=C)
x = x[:, ::down, ::down]
return x
def upsample2d(x, f, up=2, padding=0, flip_filter=False, gain=1):
if f.ndim == 1:
fh, fw = f.shape[0], f.shape[0]
elif f.ndim == 2:
fh, fw = f.shape[0], f.shape[1]
else:
raise ValueError('Invalid filter shape:', f.shape)
padx0 = padding + (fw + up - 1) // 2
padx1 = padding + (fw - up) // 2
pady0 = padding + (fh + up - 1) // 2
pady1 = padding + (fh - up) // 2
return upfirdn2d(x, f=f, up=up, padding=(padx0, padx1, pady0, pady1), flip_filter=flip_filter, gain=gain * up * up)
#------------------------------------------------------
# Linear
#------------------------------------------------------
class LinearLayer(nn.Module):
"""
Linear Layer.
Attributes:
in_features (int): Input dimension.
out_features (int): Output dimension.
use_bias (bool): If True, use bias.
bias_init (int): Bias init.
lr_multiplier (float): Learning rate multiplier.
activation (str): Activation function: 'relu', 'lrelu', etc.
param_dict (h5py.Group): Parameter dict with pretrained parameters.
layer_name (str): Layer name.
dtype (str): Data type.
rng (jax.random.PRNGKey): Random seed for initialization.
"""
in_features: int
out_features: int
use_bias: bool=True
bias_init: int=0
lr_multiplier: float=1
activation: str='linear'
param_dict: h5py.Group=None
layer_name: str=None
dtype: str='float32'
rng: Any=random.PRNGKey(0)
@nn.compact
def __call__(self, x):
"""
Run Linear Layer.
Args:
x (tensor): Input tensor of shape [N, in_features].
Returns:
(tensor): Output tensor of shape [N, out_features].
"""
w_shape = [self.in_features, self.out_features]
params = get_weight(w_shape, self.lr_multiplier, self.use_bias, self.param_dict, self.layer_name, self.rng)
if self.use_bias:
w, b = params
else:
w = params
w = self.param(name='weight', init_fn=lambda *_ : w)
w = equalize_lr_weight(w, self.lr_multiplier)
x = jnp.matmul(x, w.astype(x.dtype))
if self.use_bias:
b = self.param(name='bias', init_fn=lambda *_ : b)
b = equalize_lr_bias(b, self.lr_multiplier)
x += b.astype(x.dtype)
x += self.bias_init
x = apply_activation(x, activation=self.activation)
return x
#------------------------------------------------------
# Convolution
#------------------------------------------------------
def conv_downsample_2d(x, w, k=None, factor=2, gain=1, padding=0):
"""
Fused downsample convolution.
Padding is performed only once at the beginning, not between the operations.
The fused op is considerably more efficient than performing the same calculation
using standard TensorFlow ops. It supports gradients of arbitrary order.
Args:
x (tensor): Input tensor of the shape [N, H, W, C].
w (tensor): Weight tensor of the shape [filterH, filterW, inChannels, outChannels].
Grouped convolution can be performed by inChannels = x.shape[0] // numGroups.
k (tensor): FIR filter of the shape [firH, firW] or [firN].
The default is `[1] * factor`, which corresponds to average pooling.
factor (int): Downsampling factor (default: 2).
gain (float): Scaling factor for signal magnitude (default: 1.0).
padding (int): Number of pixels to pad or crop the output on each side (default: 0).
Returns:
(tensor): Output of the shape [N, H // factor, W // factor, C].
"""
assert isinstance(factor, int) and factor >= 1
assert isinstance(padding, int)
# Check weight shape.
ch, cw, _inC, _outC = w.shape
assert cw == ch
# Setup filter kernel.
k = setup_filter(k, gain=gain)
assert k.shape[0] == k.shape[1]
# Execute.
pad0 = (k.shape[0] - factor + cw) // 2 + padding * factor
pad1 = (k.shape[0] - factor + cw - 1) // 2 + padding * factor
x = upfirdn2d(x=x, f=k, padding=(pad0, pad0, pad1, pad1))
x = jax.lax.conv_general_dilated(x,
w,
window_strides=(factor, factor),
padding='VALID',
dimension_numbers=nn.linear._conv_dimension_numbers(x.shape))
return x
def upsample_conv_2d(x, w, k=None, factor=2, gain=1, padding=0):
"""
Fused upsample convolution.
Padding is performed only once at the beginning, not between the operations.
The fused op is considerably more efficient than performing the same calculation
using standard TensorFlow ops. It supports gradients of arbitrary order.
Args:
x (tensor): Input tensor of the shape [N, H, W, C].
w (tensor): Weight tensor of the shape [filterH, filterW, inChannels, outChannels].
Grouped convolution can be performed by inChannels = x.shape[0] // numGroups.
k (tensor): FIR filter of the shape [firH, firW] or [firN].
The default is [1] * factor, which corresponds to nearest-neighbor upsampling.
factor (int): Integer upsampling factor (default: 2).
gain (float): Scaling factor for signal magnitude (default: 1.0).
padding (int): Number of pixels to pad or crop the output on each side (default: 0).
Returns:
(tensor): Output of the shape [N, H * factor, W * factor, C].
"""
assert isinstance(factor, int) and factor >= 1
assert isinstance(padding, int)
# Check weight shape.
ch, cw, _inC, _outC = w.shape
inC = w.shape[2]
outC = w.shape[3]
assert cw == ch
# Fast path for 1x1 convolution.
if cw == 1 and ch == 1:
x = jax.lax.conv_general_dilated(x,
w,
window_strides=(1, 1),
padding='VALID',
dimension_numbers=nn.linear._conv_dimension_numbers(x.shape))
k = setup_filter(k, gain=gain * (factor ** 2))
pad0 = (k.shape[0] + factor - cw) // 2 + padding
pad1 = (k.shape[0] - factor) // 2 + padding
x = upfirdn2d(x, f=k, up=factor, padding=(pad0, pad1, pad0, pad1))
return x
# Setup filter kernel.
k = setup_filter(k, gain=gain * (factor ** 2))
assert k.shape[0] == k.shape[1]
# Determine data dimensions.
stride = (factor, factor)
output_shape = ((x.shape[1] - 1) * factor + ch, (x.shape[2] - 1) * factor + cw)
num_groups = x.shape[3] // inC
# Transpose weights.
w = jnp.reshape(w, (ch, cw, inC, num_groups, -1))
w = jnp.transpose(w[::-1, ::-1], (0, 1, 4, 3, 2))
w = jnp.reshape(w, (ch, cw, -1, num_groups * inC))
# Execute.
x = gradient_based_conv_transpose(lhs=x,
rhs=w,
strides=stride,
padding='VALID',
output_padding=(0, 0, 0, 0),
output_shape=output_shape,
)
pad0 = (k.shape[0] + factor - cw) // 2 + padding
pad1 = (k.shape[0] - factor - cw + 3) // 2 + padding
x = upfirdn2d(x=x, f=k, padding=(pad0, pad1, pad0, pad1))
return x
def conv2d(x, w, up=False, down=False, resample_kernel=None, padding=0):
assert not (up and down)
kernel = w.shape[0]
assert w.shape[1] == kernel
assert kernel >= 1 and kernel % 2 == 1
num_groups = x.shape[3] // w.shape[2]
w = w.astype(x.dtype)
if up:
x = upsample_conv_2d(x, w, k=resample_kernel, padding=padding)
elif down:
x = conv_downsample_2d(x, w, k=resample_kernel, padding=padding)
else:
padding_mode = {0: 'SAME', -(kernel // 2): 'VALID'}[padding]
x = jax.lax.conv_general_dilated(x,
w,
window_strides=(1, 1),
padding=padding_mode,
dimension_numbers=nn.linear._conv_dimension_numbers(x.shape),
feature_group_count=num_groups)
return x
def modulated_conv2d_layer(x, w, s, fmaps, kernel, up=False, down=False, demodulate=True, resample_kernel=None, fused_modconv=False):
assert not (up and down)
assert kernel >= 1 and kernel % 2 == 1
# Get weight.
wshape = (kernel, kernel, x.shape[3], fmaps)
if x.dtype.name == 'float16' and not fused_modconv and demodulate:
w *= jnp.sqrt(1 / np.prod(wshape[:-1])) / jnp.max(jnp.abs(w), axis=(0, 1, 2)) # Pre-normalize to avoid float16 overflow.
ww = w[jnp.newaxis] # [BkkIO] Introduce minibatch dimension.
# Modulate.
if x.dtype.name == 'float16' and not fused_modconv and demodulate:
s *= 1 / jnp.max(jnp.abs(s)) # Pre-normalize to avoid float16 overflow.
ww *= s[:, jnp.newaxis, jnp.newaxis, :, jnp.newaxis].astype(w.dtype) # [BkkIO] Scale input feature maps.
# Demodulate.
if demodulate:
d = jax.lax.rsqrt(jnp.sum(jnp.square(ww), axis=(1, 2, 3)) + 1e-8) # [BO] Scaling factor.
ww *= d[:, jnp.newaxis, jnp.newaxis, jnp.newaxis, :] # [BkkIO] Scale output feature maps.
# Reshape/scale input.
if fused_modconv:
x = jnp.transpose(x, axes=(0, 3, 1, 2))
x = jnp.reshape(x, (1, -1, x.shape[2], x.shape[3])) # Fused => reshape minibatch to convolution groups.
x = jnp.transpose(x, axes=(0, 2, 3, 1))
w = jnp.reshape(jnp.transpose(ww, (1, 2, 3, 0, 4)), (ww.shape[1], ww.shape[2], ww.shape[3], -1))
else:
x *= s[:, jnp.newaxis, jnp.newaxis].astype(x.dtype) # [BIhw] Not fused => scale input activations.
# 2D convolution.
x = conv2d(x, w.astype(x.dtype), up=up, down=down, resample_kernel=resample_kernel)
# Reshape/scale output.
if fused_modconv:
x = jnp.transpose(x, axes=(0, 3, 1, 2))
x = jnp.reshape(x, (-1, fmaps, x.shape[2], x.shape[3])) # Fused => reshape convolution groups back to minibatch.
x = jnp.transpose(x, axes=(0, 2, 3, 1))
elif demodulate:
x *= d[:, jnp.newaxis, jnp.newaxis].astype(x.dtype) # [BOhw] Not fused => scale output activations.
return x
def _deconv_output_length(input_length, filter_size, padding, output_padding=None, stride=0, dilation=1):
"""
Taken from: https://github.com/google/jax/pull/5772/commits
Determines the output length of a transposed convolution given the input length.
Function modified from Keras.
Arguments:
input_length: Integer.
filter_size: Integer.
padding: one of `"SAME"`, `"VALID"`, or a 2-integer tuple.
output_padding: Integer, amount of padding along the output dimension. Can
be set to `None` in which case the output length is inferred.
stride: Integer.
dilation: Integer.
Returns:
The output length (integer).
"""
if input_length is None:
return None
# Get the dilated kernel size
filter_size = filter_size + (filter_size - 1) * (dilation - 1)
# Infer length if output padding is None, else compute the exact length
if output_padding is None:
if padding == 'VALID':
length = input_length * stride + max(filter_size - stride, 0)
elif padding == 'SAME':
length = input_length * stride
else:
length = ((input_length - 1) * stride + filter_size - padding[0] - padding[1])
else:
if padding == 'SAME':
pad = filter_size // 2
total_pad = pad * 2
elif padding == 'VALID':
total_pad = 0
else:
total_pad = padding[0] + padding[1]
length = ((input_length - 1) * stride + filter_size - total_pad + output_padding)
return length
def _compute_adjusted_padding(input_size, output_size, kernel_size, stride, padding, dilation=1):
"""
Taken from: https://github.com/google/jax/pull/5772/commits
Computes adjusted padding for desired ConvTranspose `output_size`.
Ported from DeepMind Haiku.
"""
kernel_size = (kernel_size - 1) * dilation + 1
if padding == 'VALID':
expected_input_size = (output_size - kernel_size + stride) // stride
if input_size != expected_input_size:
raise ValueError(f'The expected input size with the current set of input '
f'parameters is {expected_input_size} which doesn\'t '
f'match the actual input size {input_size}.')
padding_before = 0
elif padding == 'SAME':
expected_input_size = (output_size + stride - 1) // stride
if input_size != expected_input_size:
raise ValueError(f'The expected input size with the current set of input '
f'parameters is {expected_input_size} which doesn\'t '
f'match the actual input size {input_size}.')
padding_needed = max(0, (input_size - 1) * stride + kernel_size - output_size)
padding_before = padding_needed // 2
else:
padding_before = padding[0] # type: ignore[assignment]
expanded_input_size = (input_size - 1) * stride + 1
padded_out_size = output_size + kernel_size - 1
pad_before = kernel_size - 1 - padding_before
pad_after = padded_out_size - expanded_input_size - pad_before
return (pad_before, pad_after)
def _flip_axes(x, axes):
"""
Taken from: https://github.com/google/jax/blob/master/jax/_src/lax/lax.py
Flip ndarray 'x' along each axis specified in axes tuple.
"""
for axis in axes:
x = jnp.flip(x, axis)
return x
def gradient_based_conv_transpose(lhs,
rhs,
strides,
padding,
output_padding,
output_shape=None,
dilation=None,
dimension_numbers=None,
transpose_kernel=True,
feature_group_count=1,
precision=None):
"""
Taken from: https://github.com/google/jax/pull/5772/commits
Convenience wrapper for calculating the N-d transposed convolution.
Much like `conv_transpose`, this function calculates transposed convolutions
via fractionally strided convolution rather than calculating the gradient
(transpose) of a forward convolution. However, the latter is more common
among deep learning frameworks, such as TensorFlow, PyTorch, and Keras.
This function provides the same set of APIs to help reproduce results in these frameworks.
Args:
lhs: a rank `n+2` dimensional input array.
rhs: a rank `n+2` dimensional array of kernel weights.
strides: sequence of `n` integers, amounts to strides of the corresponding forward convolution.
padding: `"SAME"`, `"VALID"`, or a sequence of `n` integer 2-tuples that controls
the before-and-after padding for each `n` spatial dimension of
the corresponding forward convolution.
output_padding: A sequence of integers specifying the amount of padding along
each spacial dimension of the output tensor, used to disambiguate the output shape of
transposed convolutions when the stride is larger than 1.
(see a detailed description at https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html)
The amount of output padding along a given dimension must
be lower than the stride along that same dimension.
If set to `None` (default), the output shape is inferred.
If both `output_padding` and `output_shape` are specified, they have to be mutually compatible.
output_shape: Output shape of the spatial dimensions of a transpose
convolution. Can be `None` or an iterable of `n` integers. If a `None` value is given (default),
the shape is automatically calculated.
Similar to `output_padding`, `output_shape` is also for disambiguating the output shape
when stride > 1 (see also
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d_transpose)
If both `output_padding` and `output_shape` are specified, they have to be mutually compatible.
dilation: `None`, or a sequence of `n` integers, giving the
dilation factor to apply in each spatial dimension of `rhs`. Dilated convolution
is also known as atrous convolution.
dimension_numbers: tuple of dimension descriptors as in lax.conv_general_dilated. Defaults to tensorflow convention.
transpose_kernel: if `True` flips spatial axes and swaps the input/output
channel axes of the kernel. This makes the output of this function identical
to the gradient-derived functions like keras.layers.Conv2DTranspose and
torch.nn.ConvTranspose2d applied to the same kernel.
Although for typical use in neural nets this is unnecessary
and makes input/output channel specification confusing, you need to set this to `True`
in order to match the behavior in many deep learning frameworks, such as TensorFlow, Keras, and PyTorch.
precision: Optional. Either ``None``, which means the default precision for
the backend, a ``lax.Precision`` enum value (``Precision.DEFAULT``,
``Precision.HIGH`` or ``Precision.HIGHEST``) or a tuple of two
``lax.Precision`` enums indicating precision of ``lhs``` and ``rhs``.
Returns:
Transposed N-d convolution.
"""
assert len(lhs.shape) == len(rhs.shape) and len(lhs.shape) >= 2
ndims = len(lhs.shape)
one = (1,) * (ndims - 2)
# Set dimensional layout defaults if not specified.
if dimension_numbers is None:
if ndims == 2:
dimension_numbers = ('NC', 'IO', 'NC')
elif ndims == 3:
dimension_numbers = ('NHC', 'HIO', 'NHC')
elif ndims == 4:
dimension_numbers = ('NHWC', 'HWIO', 'NHWC')
elif ndims == 5:
dimension_numbers = ('NHWDC', 'HWDIO', 'NHWDC')
else:
raise ValueError('No 4+ dimensional dimension_number defaults.')
dn = jax.lax.conv_dimension_numbers(lhs.shape, rhs.shape, dimension_numbers)
k_shape = np.take(rhs.shape, dn.rhs_spec)
k_sdims = k_shape[2:] # type: ignore[index]
i_shape = np.take(lhs.shape, dn.lhs_spec)
i_sdims = i_shape[2:] # type: ignore[index]
# Calculate correct output shape given padding and strides.
if dilation is None:
dilation = (1,) * (rhs.ndim - 2)
if output_padding is None:
output_padding = [None] * (rhs.ndim - 2) # type: ignore[list-item]
if isinstance(padding, str):
if padding in {'SAME', 'VALID'}:
padding = [padding] * (rhs.ndim - 2) # type: ignore[list-item]
else:
raise ValueError(f"`padding` must be 'VALID' or 'SAME'. Passed: {padding}.")
inferred_output_shape = tuple(map(_deconv_output_length, i_sdims, k_sdims, padding, output_padding, strides, dilation))
if output_shape is None:
output_shape = inferred_output_shape # type: ignore[assignment]
else:
if not output_shape == inferred_output_shape:
raise ValueError(f'`output_padding` and `output_shape` are not compatible.'
f'Inferred output shape from `output_padding`: {inferred_output_shape}, '
f'but got `output_shape` {output_shape}')
pads = tuple(map(_compute_adjusted_padding, i_sdims, output_shape, k_sdims, strides, padding, dilation))
if transpose_kernel:
# flip spatial dims and swap input / output channel axes
rhs = _flip_axes(rhs, np.array(dn.rhs_spec)[2:])
rhs = np.swapaxes(rhs, dn.rhs_spec[0], dn.rhs_spec[1])
return jax.lax.conv_general_dilated(lhs, rhs, one, pads, strides, dilation, dn, feature_group_count, precision=precision)
|