ZhifengKong's picture
upload
92740f3
raw
history blame
22.3 kB
import warnings
warnings.filterwarnings("ignore")
import random
import torchaudio
# from torch._six import string_classes
import collections
import re
import numpy as np
from transformers import AutoTokenizer, logging
try:
from models.clap import CLAP
from models.mapper import get_clapcap
except:
from .models.clap import CLAP
from .models.mapper import get_clapcap
import math
import torchaudio.transforms as T
import os
import torch
from importlib_resources import files
import argparse
import yaml
import sys
logging.set_verbosity_error()
class CLAPWrapper():
"""
A class for interfacing CLAP model.
"""
def __init__(self, model_fp, config_root, version, use_cuda=False):
self.supported_versions = ['2022', '2023', 'clapcap']
self.np_str_obj_array_pattern = re.compile(r'[SaUO]')
self.file_path = os.path.realpath(__file__)
self.default_collate_err_msg_format = (
"default_collate: batch must contain tensors, numpy arrays, numbers, "
"dicts or lists; found {}")
self.config_root = config_root
self.config_as_str = self.get_config_path(version)
self.model_fp = model_fp
self.use_cuda = use_cuda
self.version = version
if 'clapcap' in self.version:
self.clapcap, self.tokenizer, self.args = self.load_clapcap()
else:
self.clap, self.tokenizer, self.args = self.load_clap()
def get_config_path(self, version):
if version in self.supported_versions:
# config_root = /home/zkong/audio_flamingo/audio_flamingo_v1/microsoft_clap/src/configs
return f"{self.config_root}/config_{version}.yml"
else:
raise ValueError(f"The specific version is not supported. The supported versions are {str(self.supported_versions)}")
def read_config_as_args(self,config_path,args=None,is_config_str=False):
return_dict = {}
if config_path is not None:
if is_config_str:
yml_config = yaml.load(config_path, Loader=yaml.FullLoader)
else:
with open(config_path, "r") as f:
yml_config = yaml.load(f, Loader=yaml.FullLoader)
if args != None:
for k, v in yml_config.items():
if k in args.__dict__:
args.__dict__[k] = v
else:
sys.stderr.write("Ignored unknown parameter {} in yaml.\n".format(k))
else:
for k, v in yml_config.items():
return_dict[k] = v
args = args if args != None else return_dict
return argparse.Namespace(**args)
def load_clap(self):
r"""Load CLAP model with args from config file"""
args = self.read_config_as_args(self.config_as_str, is_config_str=False)
if 'roberta' in args.text_model or 'clip' in args.text_model or 'gpt' in args.text_model:
self.token_keys = ['input_ids', 'attention_mask']
elif 'bert' in args.text_model:
self.token_keys = ['input_ids', 'token_type_ids', 'attention_mask']
clap = CLAP(
audioenc_name=args.audioenc_name,
sample_rate=args.sampling_rate,
window_size=args.window_size,
hop_size=args.hop_size,
mel_bins=args.mel_bins,
fmin=args.fmin,
fmax=args.fmax,
classes_num=args.num_classes,
out_emb=args.out_emb,
text_model=args.text_model,
transformer_embed_dim=args.transformer_embed_dim,
d_proj=args.d_proj
)
# Load pretrained weights for model
model_state_dict = torch.load(self.model_fp, map_location=torch.device('cpu'))['model']
# We unwrap the DDP model and save. If the model is not unwrapped and saved, then the model needs to unwrapped before `load_state_dict`:
# Reference link: https://discuss.pytorch.org/t/how-to-load-dataparallel-model-which-trained-using-multiple-gpus/146005
clap.load_state_dict(model_state_dict)
clap.eval() # set clap in eval mode
tokenizer = AutoTokenizer.from_pretrained(args.text_model)
if 'gpt' in args.text_model:
tokenizer.add_special_tokens({'pad_token': '!'})
if self.use_cuda and torch.cuda.is_available():
clap = clap.cuda()
return clap, tokenizer, args
def load_clapcap(self):
r"""Load CLAP model with args from config file"""
args = self.read_config_as_args(self.config_as_str, is_config_str=False)
args.prefix_dim = args.d_proj
text_model = args.text_model
args.text_model = args.text_decoder
args.cross_attention = True if 'cross' in args.clapcap_model.lower() else False
if 'roberta' in args.text_model or 'clip' in args.text_model or 'gpt' in args.text_model:
self.token_keys = ['input_ids', 'attention_mask']
elif 'bert' in args.text_model:
self.token_keys = ['input_ids', 'token_type_ids', 'attention_mask']
clap = CLAP(
audioenc_name=args.audioenc_name,
sample_rate=args.sampling_rate,
window_size=args.window_size,
hop_size=args.hop_size,
mel_bins=args.mel_bins,
fmin=args.fmin,
fmax=args.fmax,
classes_num=args.num_classes,
out_emb=args.out_emb,
text_model=text_model,
transformer_embed_dim=args.transformer_embed_dim,
d_proj=args.d_proj
)
clapcap = get_clapcap(args.clapcap_model)(clap, args.text_decoder, args.prefix_length, args.prefix_length_clip, args.prefix_dim,
args.num_layers, args.normalize_prefix, args.mapping_type, True, True)
model_state_dict = torch.load(self.model_fp, map_location=torch.device('cpu'))['model']
clapcap.load_state_dict(model_state_dict)
clapcap.eval() # set clap in eval mode
tokenizer = AutoTokenizer.from_pretrained(args.text_model)
if 'gpt' in args.text_model:
tokenizer.add_special_tokens({'pad_token': '!'})
if self.use_cuda and torch.cuda.is_available():
clapcap = clapcap.cuda()
return clapcap, tokenizer, args
def default_collate(self, batch):
r"""Puts each data field into a tensor with outer dimension batch size"""
elem = batch[0]
elem_type = type(elem)
if isinstance(elem, torch.Tensor):
out = None
if torch.utils.data.get_worker_info() is not None:
# If we're in a background process, concatenate directly into a
# shared memory tensor to avoid an extra copy
numel = sum([x.numel() for x in batch])
storage = elem.storage()._new_shared(numel)
out = elem.new(storage)
return torch.stack(batch, 0, out=out)
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap':
# array of string classes and object
if self.np_str_obj_array_pattern.search(elem.dtype.str) is not None:
raise TypeError(
self.default_collate_err_msg_format.format(elem.dtype))
return self.default_collate([torch.as_tensor(b) for b in batch])
elif elem.shape == (): # scalars
return torch.as_tensor(batch)
elif isinstance(elem, float):
return torch.tensor(batch, dtype=torch.float64)
elif isinstance(elem, int):
return torch.tensor(batch)
# elif isinstance(elem, string_classes):
# return batch
elif isinstance(elem, collections.abc.Mapping):
return {key: self.default_collate([d[key] for d in batch]) for key in elem}
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple
return elem_type(*(self.default_collate(samples) for samples in zip(*batch)))
elif isinstance(elem, collections.abc.Sequence):
# check to make sure that the elements in batch have consistent size
it = iter(batch)
elem_size = len(next(it))
if not all(len(elem) == elem_size for elem in it):
raise RuntimeError(
'each element in list of batch should be of equal size')
transposed = zip(*batch)
return [self.default_collate(samples) for samples in transposed]
raise TypeError(self.default_collate_err_msg_format.format(elem_type))
def read_audio(self, audio_path, resample=False):
r"""Loads audio file or array and returns a torch tensor"""
# Randomly sample a segment of audio_duration from the clip or pad to match duration
audio_time_series, sample_rate = torchaudio.load(audio_path)
resample_rate = self.args.sampling_rate
if resample:
resampler = T.Resample(sample_rate, resample_rate)
audio_time_series = resampler(audio_time_series)
return audio_time_series, sample_rate
def load_audio_into_tensor(self, audio_path, audio_duration, resample=False):
r"""Loads audio file and returns raw audio."""
# Randomly sample a segment of audio_duration from the clip or pad to match duration
audio_time_series, sample_rate = self.read_audio(audio_path, resample=False)
audio_time_series = audio_time_series.reshape(-1)
# audio_time_series is shorter than predefined audio duration,
# so audio_time_series is extended
if audio_duration*sample_rate >= audio_time_series.shape[0]:
repeat_factor = int(np.ceil((audio_duration*sample_rate) /
audio_time_series.shape[0]))
# Repeat audio_time_series by repeat_factor to match audio_duration
audio_time_series = audio_time_series.repeat(repeat_factor)
# remove excess part of audio_time_series
audio_time_series = audio_time_series[0:audio_duration*sample_rate]
else:
# audio_time_series is longer than predefined audio duration,
# so audio_time_series is trimmed
start_index = random.randrange(
audio_time_series.shape[0] - audio_duration*sample_rate)
audio_time_series = audio_time_series[start_index:start_index +
audio_duration*sample_rate]
return torch.FloatTensor(audio_time_series)
# modified by Kong
def load_audio_clip_into_tensor(self, audio_clip, audio_duration, resample=False):
r"""Loads audio clip and returns raw audio."""
# Randomly sample a segment of audio_duration from the clip or pad to match duration
sample_rate = 44100
audio_time_series = audio_clip.reshape(-1)
# audio_time_series is shorter than predefined audio duration,
# so audio_time_series is extended
assert audio_duration * sample_rate >= audio_time_series.shape[0], \
'dur * sr = {} should be larger than len = {}'.format(audio_duration * sample_rate, audio_time_series.shape[0])
repeat_factor = int(np.ceil((audio_duration*sample_rate) /
audio_time_series.shape[0]))
# Repeat audio_time_series by repeat_factor to match audio_duration
audio_time_series = audio_time_series.repeat(repeat_factor)
# remove excess part of audio_time_series
audio_time_series = audio_time_series[0:audio_duration*sample_rate]
# return torch.FloatTensor(audio_time_series)
return audio_time_series # already on cuda device
def preprocess_audio(self, audio_files, resample):
r"""Load list of audio files and return raw audio"""
audio_tensors = []
for audio_file in audio_files:
audio_tensor = self.load_audio_into_tensor(
audio_file, self.args.duration, resample)
audio_tensor = audio_tensor.reshape(
1, -1).cuda() if self.use_cuda and torch.cuda.is_available() else audio_tensor.reshape(1, -1)
audio_tensors.append(audio_tensor)
return self.default_collate(audio_tensors)
# modified by Kong
def preprocess_audio_clips(self, audio_clips, resample=False):
r"""Load list of audio clips and return raw audio"""
audio_tensors = []
for audio_clip in audio_clips:
audio_tensor = self.load_audio_clip_into_tensor(
audio_clip, self.args.duration, resample=False)
audio_tensor = audio_tensor.reshape(
1, -1).cuda() if self.use_cuda and torch.cuda.is_available() else audio_tensor.reshape(1, -1)
audio_tensors.append(audio_tensor)
return self.default_collate(audio_tensors)
def preprocess_text(self, text_queries):
r"""Load list of class labels and return tokenized text"""
tokenized_texts = []
for ttext in text_queries:
if 'gpt' in self.args.text_model:
ttext = ttext + ' <|endoftext|>'
tok = self.tokenizer.encode_plus(
text=ttext, add_special_tokens=True, max_length=self.args.text_len, padding='max_length', return_tensors="pt")
for key in self.token_keys:
tok[key] = tok[key].reshape(-1).cuda() if self.use_cuda and torch.cuda.is_available() else tok[key].reshape(-1)
tokenized_texts.append(tok)
return self.default_collate(tokenized_texts)
def get_text_embeddings(self, class_labels):
r"""Load list of class labels and return text embeddings"""
preprocessed_text = self.preprocess_text(class_labels)
return self._get_text_embeddings(preprocessed_text)
def get_audio_embeddings(self, audio_files, resample):
r"""Load list of audio files and return a audio embeddings"""
preprocessed_audio = self.preprocess_audio(audio_files, resample)
return self._get_audio_embeddings(preprocessed_audio)
# modified by Kong
def get_audio_embeddings_from_clips(self, audio_clips, resample=False):
r"""Load list of audio files and return a audio embeddings"""
preprocessed_audio = self.preprocess_audio_clips(audio_clips, resample)
return self._get_audio_embeddings(preprocessed_audio)
def _get_text_embeddings(self, preprocessed_text):
r"""Load preprocessed text and return text embeddings"""
with torch.no_grad():
return self.clap.caption_encoder(preprocessed_text)
# modified by Kong
def _get_audio_embeddings(self, preprocessed_audio):
r"""Load preprocessed audio and return a audio embeddings"""
with torch.no_grad():
preprocessed_audio = preprocessed_audio.reshape(
preprocessed_audio.shape[0], preprocessed_audio.shape[2])
#Append [0] the audio emebdding, [1] has output class probabilities
if 'clapcap' in self.version:
return self.clapcap.clap(preprocessed_audio)[0]
else:
return self.clap.audio_encoder(preprocessed_audio)[0]
def _generic_batch_inference(self, func, *args):
r"""Process audio and/or text per batch"""
input_tmp = args[0]
batch_size = args[-1]
# args[0] has audio_files, args[1] has class_labels
inputs = [args[0], args[1]] if len(args) == 3 else [args[0]]
args0_len = len(args[0])
# compute text_embeddings once for all the audio_files batches
if len(inputs) == 2:
text_embeddings = self.get_text_embeddings(args[1])
inputs = [args[0], args[1], text_embeddings]
dataset_idx = 0
for _ in range(math.ceil(args0_len/batch_size)):
next_batch_idx = dataset_idx + batch_size
# batch size is bigger than available audio/text items
if next_batch_idx >= args0_len:
inputs[0] = input_tmp[dataset_idx:]
return func(*tuple(inputs))
else:
inputs[0] = input_tmp[dataset_idx:next_batch_idx]
yield func(*tuple(inputs))
dataset_idx = next_batch_idx
def get_audio_embeddings_per_batch(self, audio_files, batch_size):
r"""Load preprocessed audio and return a audio embeddings per batch"""
return self._generic_batch_inference(self.get_audio_embeddings, audio_files, batch_size)
def get_text_embeddings_per_batch(self, class_labels, batch_size):
r"""Load preprocessed text and return text embeddings per batch"""
return self._generic_batch_inference(self.get_text_embeddings, class_labels, batch_size)
def compute_similarity(self, audio_embeddings, text_embeddings):
r"""Compute similarity between text and audio embeddings"""
audio_embeddings = audio_embeddings/torch.norm(audio_embeddings, dim=-1, keepdim=True)
text_embeddings = text_embeddings/torch.norm(text_embeddings, dim=-1, keepdim=True)
logit_scale = self.clap.logit_scale.exp()
similarity = logit_scale*text_embeddings @ audio_embeddings.T
return similarity.T
def classify_audio_files_per_batch(self, audio_files, class_labels, batch_size):
r"""Compute classification probabilities for each audio recording in a batch and each class label"""
return self._generic_batch_inference(self.classify_audio_files, audio_files, class_labels, batch_size)
def generate_caption(self, audio_files, resample=True, beam_size: int = 5, entry_length=67, temperature=1.):
r"""Generate audio captions for each audio recording in a batch"""
captions = []
audio_tensors = self.preprocess_audio(audio_files, resample)
with torch.no_grad():
prefix = self.clapcap.clap(audio_tensors.squeeze(1))[0]
if self.args.normalize_prefix:
prefix = prefix / prefix.norm(2, -1).reshape(-1,1)
prefix_embed = self.clapcap.clap_project(prefix).view(-1, self.args.prefix_length, self.clapcap.gpt.transformer.wte.weight.shape[1])
for i in range(len(audio_tensors)):
gen_caption = self._generate_beam(embed=prefix_embed[i].unsqueeze(0),\
beam_size=beam_size,\
entry_length=entry_length,\
temperature=temperature)[0]
captions.append(gen_caption.capitalize())
return captions
def _generate_beam(self, beam_size: int = 5, prompt=None, embed=None,
entry_length=67, temperature=1., stop_token: str = ' <|endoftext|>'):
r"""Generate captions by beam search decoding"""
self.clapcap.eval()
stop_token_index = self.tokenizer.encode(stop_token)[0]
tokens = None
scores = None
device = next(self.clapcap.parameters()).device
seq_lengths = torch.ones(beam_size, device=device)
is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool)
with torch.no_grad():
if embed is not None:
generated = embed
else:
if tokens is None:
tokens = torch.tensor(self.tokenizer.encode(prompt))
tokens = tokens.unsqueeze(0).to(device)
generated = self.clapcap.gpt.transformer.wte(tokens)
for i in range(entry_length):
outputs = self.clapcap.gpt(inputs_embeds=generated)
logits = outputs.logits
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
logits = logits.softmax(-1).log()
if scores is None:
scores, next_tokens = logits.topk(beam_size, -1)
generated = generated.expand(beam_size, *generated.shape[1:])
next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0)
if tokens is None:
tokens = next_tokens
else:
tokens = tokens.expand(beam_size, *tokens.shape[1:])
tokens = torch.cat((tokens, next_tokens), dim=1)
else:
logits[is_stopped] = -float(np.inf)
logits[is_stopped, 0] = 0
scores_sum = scores[:, None] + logits
seq_lengths[~is_stopped] += 1
scores_sum_average = scores_sum / seq_lengths[:, None]
scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1)
next_tokens_source = next_tokens // scores_sum.shape[1]
seq_lengths = seq_lengths[next_tokens_source]
next_tokens = next_tokens % scores_sum.shape[1]
next_tokens = next_tokens.unsqueeze(1)
tokens = tokens[next_tokens_source]
tokens = torch.cat((tokens, next_tokens), dim=1)
generated = generated[next_tokens_source]
scores = scores_sum_average * seq_lengths
is_stopped = is_stopped[next_tokens_source]
next_token_embed = self.clapcap.gpt.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1)
generated = torch.cat((generated, next_token_embed), dim=1)
is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze()
if is_stopped.all():
break
scores = scores / seq_lengths
output_list = tokens.cpu().numpy()
output_texts = [self.tokenizer.decode(output[:int(length)]) for output, length in zip(output_list, seq_lengths)]
order = scores.argsort(descending=True)
output_texts = [output_texts[i] for i in order]
return output_texts