File size: 6,686 Bytes
92740f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Copyright (c) 2024 NVIDIA CORPORATION. 
#   Licensed under the MIT license.

import os
import yaml

import gradio as gr

import librosa
from pydub import AudioSegment
import soundfile as sf

import numpy as np
import torch
import laion_clap

from inference_utils import prepare_tokenizer, prepare_model, inference
from data import AudioTextDataProcessor


def load_laionclap():
    model = laion_clap.CLAP_Module(enable_fusion=True, amodel='HTSAT-tiny').cuda()
    model.load_ckpt(ckpt='630k-audioset-fusion-best.pt')
    model.eval()
    return model


def int16_to_float32(x):
    return (x / 32767.0).astype(np.float32)


def float32_to_int16(x):
    x = np.clip(x, a_min=-1., a_max=1.)
    return (x * 32767.).astype(np.int16)


def load_audio(file_path, target_sr=44100, duration=33.25, start=0.0):
    if file_path.endswith('.mp3'):
        audio = AudioSegment.from_file(file_path)
        if len(audio) > (start + duration) * 1000:
            audio = audio[start * 1000:(start + duration) * 1000]

        if audio.frame_rate != target_sr:
            audio = audio.set_frame_rate(target_sr)

        if audio.channels > 1:
            audio = audio.set_channels(1)
        
        data = np.array(audio.get_array_of_samples())
        if audio.sample_width == 2:
            data = data.astype(np.float32) / np.iinfo(np.int16).max
        elif audio.sample_width == 4:
            data = data.astype(np.float32) / np.iinfo(np.int32).max
        else:
            raise ValueError("Unsupported bit depth: {}".format(audio.sample_width))

    else:
        with sf.SoundFile(file_path) as audio:
            original_sr = audio.samplerate
            channels = audio.channels

            max_frames = int((start + duration) * original_sr)

            audio.seek(int(start * original_sr))
            frames_to_read = min(max_frames, len(audio))
            data = audio.read(frames_to_read)

            if data.max() > 1 or data.min() < -1:
                data = data / max(abs(data.max()), abs(data.min()))
        
        if original_sr != target_sr:
            if channels == 1:
                data = librosa.resample(data.flatten(), orig_sr=original_sr, target_sr=target_sr)
            else:
                data = librosa.resample(data.T, orig_sr=original_sr, target_sr=target_sr)[0]
        else:
            if channels != 1:
                data = data.T[0]
    
    if data.min() >= 0:
        data = 2 * data / abs(data.max()) - 1.0
    else:
        data = data / max(abs(data.max()), abs(data.min()))
    return data


@torch.no_grad()
def compute_laionclap_text_audio_sim(audio_file, laionclap_model, outputs):
    try:
        data = load_audio(audio_file, target_sr=48000)
    
    except Exception as e:
        print(audio_file, 'unsuccessful due to', e)
        return [0.0] * len(outputs)
    
    audio_data = data.reshape(1, -1)
    audio_data_tensor = torch.from_numpy(int16_to_float32(float32_to_int16(audio_data))).float().cuda()
    audio_embed = laionclap_model.get_audio_embedding_from_data(x=audio_data_tensor, use_tensor=True)

    text_embed = laionclap_model.get_text_embedding(outputs, use_tensor=True)

    cos = torch.nn.CosineSimilarity(dim=1, eps=1e-6)
    cos_similarity = cos(audio_embed.repeat(text_embed.shape[0], 1), text_embed)
    return cos_similarity.squeeze().cpu().numpy()


inference_kwargs = {
    "do_sample": True,
    "top_k": 50,
    "top_p": 0.95,
    "num_return_sequences": 10
}

config = yaml.load(open('chat.yaml'), Loader=yaml.FullLoader)
clap_config = config['clap_config']
model_config = config['model_config']

text_tokenizer = prepare_tokenizer(model_config)
DataProcessor = AudioTextDataProcessor(
    data_root='./',
    clap_config=clap_config,
    tokenizer=text_tokenizer,
    max_tokens=512,
)

laionclap_model = load_laionclap()

model = prepare_model(
    model_config=model_config, 
    clap_config=clap_config, 
    checkpoint_path='chat.pt'
)


def inference_item(name, prompt):
    item = {
        'name': str(name), 
        'prefix': 'The task is dialog.', 
        'prompt': str(prompt)
    }
    processed_item = DataProcessor.process(item)

    outputs = inference(
        model, text_tokenizer, item, processed_item,
        inference_kwargs,
    )

    laionclap_scores = compute_laionclap_text_audio_sim(
        item["name"],
        laionclap_model,
        outputs
    )

    outputs_joint = [(output, score) for (output, score) in zip(outputs, laionclap_scores)]
    outputs_joint.sort(key=lambda x: -x[1])

    return outputs_joint[0][0]


with gr.Blocks(title="Audio Flamingo - Demo") as ui:

    gr.HTML(
        """
        <div style="text-align: center; max-width: 900px; margin: 0 auto;">
            <div
            style="
                display: inline-flex;
                align-items: center;
                gap: 0.8rem;
                font-size: 1.5rem;
            "
            >
            <h1 style="font-weight: 700; margin-bottom: 7px; line-height: normal;">
                Audio Flamingo: A Novel Audio Language Model with Few-Shot Learning and Dialogue Abilities
            </h1>
            </div>
            <p style="margin-bottom: 10px; font-size: 125%">
            <a href="https://arxiv.org/abs/2402.01831">[Paper]</a>  <a href="https://github.com/NVIDIA/audio-flamingo">[Code]</a>  <a href="https://audioflamingo.github.io/">[Demo]</a>
            </p>
        </div>
        """
    )
    gr.HTML(
        """
        <div>
        <h3>Model Overview</h3>
        Audio Flamingo is an audio language model that can understand sounds beyond speech. 
        It can also answer questions about the sound in natural language. 
        Examples of questions include: 
        "Can you briefly describe what you hear in this audio?", 
        "What is the emotion conveyed in this music?", 
        "Where is this audio usually heard?", 
        or "What place is this music usually played at?".
        </div>
        """
    )

    name = gr.Textbox(
        label="Audio file path (choose one from: audio/wav{1--6}.wav)",
        value="audio/wav5.wav"
    )
    prompt = gr.Textbox(
        label="Instruction",
        value='Can you briefly describe what you hear in this audio?'
    )

    with gr.Row():
        play_audio_button = gr.Button("Play Audio")
    audio_output = gr.Audio(label="Playback")
    play_audio_button.click(fn=lambda x: x, inputs=name, outputs=audio_output)

    inference_button = gr.Button("Inference")

    output_text = gr.Textbox(label="Audio Flamingo output")

    inference_button.click(
        fn=inference_item, 
        inputs=[name, prompt],
        outputs=output_text
    )

ui.queue()
ui.launch()