Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import random | |
import torch | |
from PIL import Image | |
import os | |
import spaces | |
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor | |
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import StableDiffusionXLPipeline | |
from kolors.models.modeling_chatglm import ChatGLMModel | |
from kolors.models.tokenization_chatglm import ChatGLMTokenizer | |
from kolors.models.unet_2d_condition import UNet2DConditionModel | |
from diffusers import AutoencoderKL, EulerDiscreteScheduler | |
from huggingface_hub import snapshot_download | |
device = "cuda" | |
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
ckpt_dir = f'{root_dir}/weights/Kolors' | |
snapshot_download(repo_id="Kwai-Kolors/Kolors", local_dir=ckpt_dir) | |
snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus", local_dir=f"{root_dir}/weights/Kolors-IP-Adapter-Plus") | |
# Load models | |
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device) | |
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') | |
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device) | |
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") | |
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device) | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained( | |
f'{root_dir}/weights/Kolors-IP-Adapter-Plus/image_encoder', | |
ignore_mismatched_sizes=True | |
).to(dtype=torch.float16, device=device) | |
ip_img_size = 336 | |
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size) | |
pipe = StableDiffusionXLPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
image_encoder=image_encoder, | |
feature_extractor=clip_image_processor, | |
force_zeros_for_empty_prompt=False | |
).to(device) | |
#pipe = pipe.to(device) | |
#pipe.enable_model_cpu_offload() | |
if hasattr(pipe.unet, 'encoder_hid_proj'): | |
pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj | |
pipe.load_ip_adapter(f'{root_dir}/weights/Kolors-IP-Adapter-Plus', subfolder="", weight_name=["ip_adapter_plus_general.bin"]) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def infer(prompt, ip_adapter_image, ip_adapter_scale=0.5, negative_prompt="", seed=100, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=50, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
pipe.to("cuda") | |
image_encoder.to("cuda") | |
pipe.image_encoder = image_encoder | |
pipe.set_ip_adapter_scale([ip_adapter_scale]) | |
image = pipe( | |
prompt=prompt, | |
ip_adapter_image=[ip_adapter_image], | |
negative_prompt=negative_prompt, | |
height=height, | |
width=width, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=1, | |
generator=generator, | |
).images[0] | |
return image, seed | |
examples = [ | |
["A dog", "minta.jpeg", 0.4], | |
["A capybara", "king-min.png", 0.5], | |
["A cat", "blue_hair.png", 0.5], | |
["", "meow.jpeg", 1.0], | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 720px; | |
} | |
#result img{ | |
object-position: top; | |
} | |
#result .image-container{ | |
height: 100% | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# Kolors IP-Adapter - image reference and variations | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
with gr.Row(): | |
with gr.Column(): | |
ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil") | |
ip_adapter_scale = gr.Slider( | |
label="Image influence scale", | |
info="Use 1 for creating variations", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
value=0.5, | |
) | |
result = gr.Image(label="Result", elem_id="result") | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=5.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=25, | |
) | |
gr.Examples( | |
examples=examples, | |
fn=infer, | |
inputs=[prompt, ip_adapter_image, ip_adapter_scale], | |
outputs=[result, seed], | |
cache_examples="lazy" | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[prompt, ip_adapter_image, ip_adapter_scale, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs=[result, seed] | |
) | |
demo.queue().launch() |