File size: 14,739 Bytes
d5f497d
 
 
6c91ee7
 
 
d5f497d
6c91ee7
 
 
d5f497d
 
6c91ee7
 
 
 
 
 
b12efeb
6c91ee7
 
d5f497d
 
 
6c91ee7
 
08f2519
b12efeb
d5f497d
 
 
 
 
6c91ee7
08f2519
6c91ee7
 
b12efeb
d5f497d
95ce3cf
08f2519
 
 
6c91ee7
d5f497d
6c91ee7
 
 
 
 
9cdf8f2
 
d5f497d
6c91ee7
d5f497d
6c91ee7
d5f497d
6c91ee7
d5f497d
 
6c91ee7
d5f497d
9cdf8f2
 
d5f497d
6c91ee7
d5f497d
b12efeb
 
 
 
 
 
 
16b66b2
 
b12efeb
 
 
d72888b
08f2519
 
5bc0c16
 
 
b12efeb
08f2519
6c91ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f497d
b12efeb
 
 
 
 
 
 
 
 
 
d5f497d
8004741
d5f497d
 
e9f3ef9
6c91ee7
08f2519
9cdf8f2
a1bb479
6c91ee7
9cdf8f2
6c91ee7
9cdf8f2
6c91ee7
08f2519
 
6c91ee7
d5f497d
 
 
6c91ee7
a1bb479
08f2519
e9f3ef9
6c91ee7
 
 
 
 
08f2519
6c91ee7
 
 
 
 
 
 
 
9de30d4
cd4f227
e9f3ef9
 
 
08f2519
9cdf8f2
a1bb479
e9f3ef9
9cdf8f2
e9f3ef9
9cdf8f2
e9f3ef9
08f2519
 
e9f3ef9
 
 
 
 
a1bb479
08f2519
e9f3ef9
 
 
 
 
 
08f2519
e9f3ef9
 
 
 
 
 
 
 
9de30d4
fad18b4
b12efeb
 
 
4ab3f31
b12efeb
 
 
8cf7184
b12efeb
8cf7184
b12efeb
8cf7184
 
b12efeb
 
 
 
 
 
8cf7184
b12efeb
 
 
 
 
 
8cf7184
b12efeb
 
 
 
 
 
 
 
 
 
78ad020
08f2519
 
78ad020
 
 
08f2519
 
d5f497d
 
b12efeb
 
 
 
 
 
d5f497d
 
 
d890da3
d5f497d
 
 
 
 
20c2217
83bde13
20c2217
d5f497d
 
f92dc60
 
 
 
 
 
 
d5f497d
 
 
 
 
 
d890da3
d5f497d
6c91ee7
 
88a3aee
d5f497d
 
 
 
 
9cdf8f2
d5f497d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cdf8f2
d5f497d
 
 
 
 
 
6c91ee7
d5f497d
 
6c91ee7
 
d5f497d
 
6c91ee7
9cdf8f2
6c91ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f497d
08f2519
 
 
 
 
 
 
78ad020
20c2217
 
b12efeb
d5f497d
 
6c91ee7
9de30d4
d5f497d
 
 
e9f3ef9
78ad020
08f2519
7132521
78ad020
 
 
 
e9f3ef9
78ad020
08f2519
7132521
78ad020
d5f497d
b12efeb
 
 
 
 
 
 
 
d5f497d
78ad020
e9f3ef9
08f2519
9de30d4
78ad020
 
 
e9f3ef9
08f2519
9de30d4
78ad020
 
b12efeb
 
 
 
 
 
8004741
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import spaces
import random
import torch
import cv2
import gradio as gr
import numpy as np
from huggingface_hub import snapshot_download
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor
from diffusers.utils import load_image
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.controlnet import ControlNetModel
from diffusers import  AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image
from annotator.midas import MidasDetector
from annotator.dwpose import DWposeDetector
from annotator.util import resize_image, HWC3


device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
ckpt_dir_depth = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Depth")
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")
ckpt_dir_ipa = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus")
ckpt_dir_pose = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Pose")

text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)

controlnet_depth = ControlNetModel.from_pretrained(f"{ckpt_dir_depth}", revision=None).half().to(device)
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)
controlnet_pose = ControlNetModel.from_pretrained(f"{ckpt_dir_pose}", revision=None).half().to(device)

image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_dir_ipa}/image_encoder',  ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device)
ip_img_size = 336
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size )

pipe_depth = StableDiffusionXLControlNetImg2ImgPipeline(
    vae=vae,
    controlnet = controlnet_depth,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    image_encoder=image_encoder,
    feature_extractor=clip_image_processor,
    force_zeros_for_empty_prompt=False
)

pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
    vae=vae,
    controlnet = controlnet_canny,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    image_encoder=image_encoder,
    feature_extractor=clip_image_processor,
    force_zeros_for_empty_prompt=False
)

pipe_pose = StableDiffusionXLControlNetImg2ImgPipeline(
    vae=vae,
    controlnet = controlnet_pose,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    image_encoder=image_encoder,
    feature_extractor=clip_image_processor,
    force_zeros_for_empty_prompt=False
)

for pipe in [pipe_depth]:
    if hasattr(pipe.unet, 'encoder_hid_proj'):
        pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj
        
pipe_depth.load_ip_adapter(f'{ckpt_dir_ipa}' , subfolder="", weight_name=["ip_adapter_plus_general.bin"])
pipe_canny.load_ip_adapter(f'{ckpt_dir_ipa}' , subfolder="", weight_name=["ip_adapter_plus_general.bin"])
pipe_pose.load_ip_adapter(f'{ckpt_dir_ipa}' , subfolder="", weight_name=["ip_adapter_plus_general.bin"])

@spaces.GPU
def process_canny_condition(image, canny_threods=[100,200]):
    np_image = image.copy()
    np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1])
    np_image = np_image[:, :, None]
    np_image = np.concatenate([np_image, np_image, np_image], axis=2)
    np_image = HWC3(np_image)
    return Image.fromarray(np_image)

model_midas = MidasDetector()

@spaces.GPU
def process_depth_condition_midas(img, res = 1024):
    h,w,_ = img.shape
    img = resize_image(HWC3(img), res)
    result = HWC3(model_midas(img))
    result = cv2.resize(result, (w,h))
    return Image.fromarray(result)

model_dwpose = DWposeDetector()
@spaces.GPU
def process_dwpose_condition(image, res=1024):
    h,w,_ = image.shape
    img = resize_image(HWC3(image), res)
    out_res, out_img = model_dwpose(image) 
    result = HWC3(out_img)
    result = cv2.resize( result, (w,h) )
    return Image.fromarray(result)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU
def infer_depth(prompt, 
          image = None, 
          ipa_img = None,
          negative_prompt = "nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯", 
          seed = 66, 
          randomize_seed = False,
          guidance_scale = 5.0, 
          num_inference_steps = 50,
          controlnet_conditioning_scale = 0.5,
          control_guidance_end = 0.9,
          strength = 1.0,
          ip_scale = 0.5,
        ):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    init_image = resize_image(image,  MAX_IMAGE_SIZE)
    pipe = pipe_depth.to("cuda")
    pipe.set_ip_adapter_scale([ip_scale])
    condi_img = process_depth_condition_midas( np.array(init_image), MAX_IMAGE_SIZE)
    image = pipe(
        prompt= prompt ,
        image = init_image,
        controlnet_conditioning_scale = controlnet_conditioning_scale,
        control_guidance_end = control_guidance_end, 
        ip_adapter_image=[ipa_img],
        strength= strength , 
        control_image = condi_img,
        negative_prompt= negative_prompt , 
        num_inference_steps= num_inference_steps, 
        guidance_scale= guidance_scale,
        num_images_per_prompt=1,
        generator=generator,
    ).images[0]
    return [condi_img, image], seed

@spaces.GPU
def infer_canny(prompt, 
          image = None, 
          ipa_img = None,
          negative_prompt = "nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯", 
          seed = 66, 
          randomize_seed = False,
          guidance_scale = 5.0, 
          num_inference_steps = 50,
          controlnet_conditioning_scale = 0.5,
          control_guidance_end = 0.9,
          strength = 1.0,
          ip_scale = 0.5,
        ):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    init_image = resize_image(image,  MAX_IMAGE_SIZE)
    pipe = pipe_canny.to("cuda")
    pipe.set_ip_adapter_scale([ip_scale])
    condi_img = process_canny_condition(np.array(init_image))
    image = pipe(
        prompt= prompt ,
        image = init_image,
        controlnet_conditioning_scale = controlnet_conditioning_scale,
        control_guidance_end = control_guidance_end, 
        ip_adapter_image=[ipa_img],
        strength= strength , 
        control_image = condi_img,
        negative_prompt= negative_prompt , 
        num_inference_steps= num_inference_steps, 
        guidance_scale= guidance_scale,
        num_images_per_prompt=1,
        generator=generator,
    ).images[0]
    return [condi_img, image], seed

@spaces.GPU
def infer_pose(prompt, 
          image = None, 
          ipa_img = None,
          negative_prompt = "nsfw,脸部阴影,低分辨率,jpeg伪影、模糊、糟糕,黑脸,霓虹灯", 
          seed = 66, 
          randomize_seed = False,
          guidance_scale = 5.0, 
          num_inference_steps = 50,
          controlnet_conditioning_scale = 0.5,
          control_guidance_end = 0.9,
          strength = 1.0,
          ip_scale = 0.5,
        ):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    init_image = resize_image(image,  MAX_IMAGE_SIZE)
    pipe = pipe_pose.to("cuda")
    pipe.set_ip_adapter_scale([ip_scale])
    condi_img = process_dwpose_condition(np.array(init_image), MAX_IMAGE_SIZE)
    image = pipe(
        prompt= prompt ,
        image = init_image,
        controlnet_conditioning_scale = controlnet_conditioning_scale,
        control_guidance_end = control_guidance_end, 
        ip_adapter_image=[ipa_img],
        strength= strength , 
        control_image = condi_img,
        negative_prompt= negative_prompt , 
        num_inference_steps= num_inference_steps, 
        guidance_scale= guidance_scale,
        num_images_per_prompt=1,
        generator=generator,
    ).images[0]
    return [condi_img, image], seed

canny_examples = [
    ["一个红色头发的女孩,唯美风景,清新明亮,斑驳的光影,最好的质量,超细节,8K画质",
     "image/woman_2.png", "image/2.png"],
]

depth_examples = [
    ["一个漂亮的女孩,最好的质量,超细节,8K画质",
     "image/1.png","image/woman_1.png"],
]

pose_examples = [
    ["一位穿着紫色泡泡袖连衣裙、戴着皇冠和白色蕾丝手套的女孩,超高分辨率,最佳品质,8k画质",
     "image/woman_3.png","image/woman_4.png"],
]


css="""
#col-left {
    margin: 0 auto;
    max-width: 600px;
}
#col-right {
    margin: 0 auto;
    max-width: 750px;
}
#button {
    color: blue;
}
"""

def load_description(fp):
    with open(fp, 'r', encoding='utf-8') as f:
        content = f.read()
    return content

with gr.Blocks(css=css) as Kolors:
    gr.HTML(load_description("assets/title.md"))
    with gr.Row():
        with gr.Column(elem_id="col-left"):
            with gr.Row():
                prompt = gr.Textbox(
                    label="Prompt",
                    placeholder="Enter your prompt",
                    lines=2
                )
            with gr.Row():
                image = gr.Image(label="Image", type="pil")
                ipa_image = gr.Image(label="IP-Adapter-Image", type="pil")
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt = gr.Textbox(
                    label="Negative prompt",
                    placeholder="Enter a negative prompt",
                    visible=True,
                    value="nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯"
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=5.0,
                    )
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=10,
                        maximum=50,
                        step=1,
                        value=30,
                    )
                with gr.Row():
                    controlnet_conditioning_scale = gr.Slider(
                        label="Controlnet Conditioning Scale",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.5,
                    )
                    control_guidance_end = gr.Slider(
                        label="Control Guidance End",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.9,
                    )
                with gr.Row():
                    strength = gr.Slider(
                        label="Strength",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=1.0,
                    )
                    ip_scale = gr.Slider(
                        label="IP_Scale",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.5,
                    )
            with gr.Row():
                canny_button = gr.Button("Canny", elem_id="button")
                depth_button = gr.Button("Depth", elem_id="button")
                pose_button = gr.Button("Pose", elem_id="button")
            
        with gr.Column(elem_id="col-right"):
            result = gr.Gallery(label="Result", show_label=False, columns=2)
            seed_used = gr.Number(label="Seed Used")
    
    with gr.Row():
        gr.Examples(
                fn = infer_canny,
                examples = canny_examples,
                inputs = [prompt, image, ipa_image],
                outputs = [result, seed_used],
                label = "Canny"
            )
    with gr.Row():
        gr.Examples(
                fn = infer_depth,
                examples = depth_examples,
                inputs = [prompt, image, ipa_image],
                outputs = [result, seed_used],
                label = "Depth"
            )
    with gr.Row():
        gr.Examples(
                fn = infer_pose,
                examples = pose_examples,
                inputs = [prompt, image, ipa_image],
                outputs = [result, seed_used],
                label = "Pose"
            )

    canny_button.click(
        fn = infer_canny,
        inputs = [prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale],
        outputs = [result, seed_used]
    )

    depth_button.click(
        fn = infer_depth,
        inputs = [prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale],
        outputs = [result, seed_used]
    )

    pose_button.click(
        fn = infer_pose,
        inputs = [prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale],
        outputs = [result, seed_used]
    )

Kolors.queue().launch(debug=True)