Spaces:
Runtime error
Runtime error
from transformers import pipeline | |
import streamlit as st | |
import torch | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
pipe = pipeline('LLaVA', model='liuhaotian/llava-v1.5-13b', device=device ) | |
text = st.text_area('Enter some text here!') | |
if text: | |
out = pipe(text) | |
st.json(out) | |
# from transformers import pipeline | |
# import torch | |
# device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
# classifier = pipeline( | |
# "audio-classification", model="MIT/ast-finetuned-speech-commands-v2", device=device | |
# ) | |
# from transformers.pipelines.audio_utils import ffmpeg_microphone_live | |
# def launch_fn( | |
# wake_word="marvin", | |
# prob_threshold=0.5, | |
# chunk_length_s=2.0, | |
# stream_chunk_s=1, | |
# debug=False, | |
# ): | |
# if wake_word not in classifier.model.config.label2id.keys(): | |
# raise ValueError( | |
# f"Wake word {wake_word} not in set of valid class labels, pick a wake word in the set {classifier.model.config.label2id.keys()}." | |
# ) | |
# sampling_rate = classifier.feature_extractor.sampling_rate | |
# mic = ffmpeg_microphone_live( | |
# sampling_rate=sampling_rate, | |
# chunk_length_s=chunk_length_s, | |
# stream_chunk_s=stream_chunk_s, | |
# ) | |
# print("Listening for wake word...") | |
# mic_results = classifier(mic) | |
# for prediction in mic_results: | |
# prediction = prediction[0] | |
# if debug: | |
# print(prediction) | |
# if prediction["label"] == wake_word: | |
# if prediction["score"] > prob_threshold: | |
# return True | |
# launch_fn(debug=True) | |