import gradio as gr import spaces import torch from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline pipeline = StableDiffusionPipeline.from_pretrained("nroggendorff/zelda-diffusion").to("cuda") img2img = StableDiffusionImg2ImgPipeline(**pipeline.components) @spaces.GPU def generate(prompt, negative_prompt, width, height, sample_steps, hrf): image = pipeline(prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, num_inference_steps=sample_steps).images[0] if hrf: return img2img( prompt=prompt, image=image, strength=0.75, width=width * 2, height=height * 2 ).images[0] else: return image with gr.Blocks() as interface: with gr.Column(): with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt", info="What do you want?", value="pretty girl face, 32k HDR, studio lighting", lines=4, interactive=True) negative_prompt = gr.Textbox(label="Negative Prompt", info="What do you want to exclude from the image?", value="watermark, jewelry, ugly, low quality", lines=4, interactive=True) with gr.Column(): generate_button = gr.Button("Generate") output = gr.Image() with gr.Row(): with gr.Accordion(label="Advanced Settings", open=False): with gr.Row(): with gr.Column(): width = gr.Slider(label="Width", info="The width in pixels of the generated image.", value=512, minimum=128, maximum=4096, step=64, interactive=True) height = gr.Slider(label="Height", info="The height in pixels of the generated image.", value=512, minimum=128, maximum=4096, step=64, interactive=True) hrf = gr.Checkbox(label="High-Res Fix", info="Run through img2img.", value=True, interactive=True) with gr.Column(): sampling_steps = gr.Slider(label="Sampling Steps", info="The number of denoising steps.", value=20, minimum=4, maximum=50, step=1, interactive=True) generate_button.click(fn=generate, inputs=[prompt, negative_prompt, width, height, sampling_steps, hrf], outputs=[output]) if __name__ == "__main__": interface.launch()