import os, types, traceback, copy import json from enum import Enum import time from typing import Callable, Optional from litellm.utils import ModelResponse, get_secret, Choices, Message, Usage import litellm import sys, httpx class PalmError(Exception): def __init__(self, status_code, message): self.status_code = status_code self.message = message self.request = httpx.Request(method="POST", url="https://developers.generativeai.google/api/python/google/generativeai/chat") self.response = httpx.Response(status_code=status_code, request=self.request) super().__init__( self.message ) # Call the base class constructor with the parameters it needs class PalmConfig(): """ Reference: https://developers.generativeai.google/api/python/google/generativeai/chat The class `PalmConfig` provides configuration for the Palm's API interface. Here are the parameters: - `context` (string): Text that should be provided to the model first, to ground the response. This could be a prompt to guide the model's responses. - `examples` (list): Examples of what the model should generate. They are treated identically to conversation messages except that they take precedence over the history in messages if the total input size exceeds the model's input_token_limit. - `temperature` (float): Controls the randomness of the output. Must be positive. Higher values produce a more random and varied response. A temperature of zero will be deterministic. - `candidate_count` (int): Maximum number of generated response messages to return. This value must be between [1, 8], inclusive. Only unique candidates are returned. - `top_k` (int): The API uses combined nucleus and top-k sampling. `top_k` sets the maximum number of tokens to sample from on each step. - `top_p` (float): The API uses combined nucleus and top-k sampling. `top_p` configures the nucleus sampling. It sets the maximum cumulative probability of tokens to sample from. - `max_output_tokens` (int): Sets the maximum number of tokens to be returned in the output """ context: Optional[str]=None examples: Optional[list]=None temperature: Optional[float]=None candidate_count: Optional[int]=None top_k: Optional[int]=None top_p: Optional[float]=None max_output_tokens: Optional[int]=None def __init__(self, context: Optional[str]=None, examples: Optional[list]=None, temperature: Optional[float]=None, candidate_count: Optional[int]=None, top_k: Optional[int]=None, top_p: Optional[float]=None, max_output_tokens: Optional[int]=None) -> None: locals_ = locals() for key, value in locals_.items(): if key != 'self' and value is not None: setattr(self.__class__, key, value) @classmethod def get_config(cls): return {k: v for k, v in cls.__dict__.items() if not k.startswith('__') and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod)) and v is not None} def completion( model: str, messages: list, model_response: ModelResponse, print_verbose: Callable, api_key, encoding, logging_obj, optional_params=None, litellm_params=None, logger_fn=None, ): try: import google.generativeai as palm except: raise Exception("Importing google.generativeai failed, please run 'pip install -q google-generativeai") palm.configure(api_key=api_key) model = model ## Load Config inference_params = copy.deepcopy(optional_params) inference_params.pop("stream", None) # palm does not support streaming, so we handle this by fake streaming in main.py config = litellm.PalmConfig.get_config() for k, v in config.items(): if k not in inference_params: # completion(top_k=3) > palm_config(top_k=3) <- allows for dynamic variables to be passed in inference_params[k] = v prompt = "" for message in messages: if "role" in message: if message["role"] == "user": prompt += ( f"{message['content']}" ) else: prompt += ( f"{message['content']}" ) else: prompt += f"{message['content']}" ## LOGGING logging_obj.pre_call( input=prompt, api_key="", additional_args={"complete_input_dict": {"inference_params": inference_params}}, ) ## COMPLETION CALL try: response = palm.generate_text(prompt=prompt, **inference_params) except Exception as e: raise PalmError( message=str(e), status_code=500, ) ## LOGGING logging_obj.post_call( input=prompt, api_key="", original_response=response, additional_args={"complete_input_dict": {}}, ) print_verbose(f"raw model_response: {response}") ## RESPONSE OBJECT completion_response = response try: choices_list = [] for idx, item in enumerate(completion_response.candidates): if len(item["output"]) > 0: message_obj = Message(content=item["output"]) else: message_obj = Message(content=None) choice_obj = Choices(index=idx+1, message=message_obj) choices_list.append(choice_obj) model_response["choices"] = choices_list except Exception as e: traceback.print_exc() raise PalmError(message=traceback.format_exc(), status_code=response.status_code) try: completion_response = model_response["choices"][0]["message"].get("content") except: raise PalmError(status_code=400, message=f"No response received. Original response - {response}") ## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here. prompt_tokens = len( encoding.encode(prompt) ) completion_tokens = len( encoding.encode(model_response["choices"][0]["message"].get("content", "")) ) model_response["created"] = int(time.time()) model_response["model"] = "palm/" + model usage = Usage( prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens ) model_response.usage = usage return model_response def embedding(): # logic for parsing in - calling - parsing out model embedding calls pass