import os import json from enum import Enum import requests import time from typing import Callable, Optional from litellm.utils import ModelResponse, Usage from .prompt_templates.factory import prompt_factory, custom_prompt class OobaboogaError(Exception): def __init__(self, status_code, message): self.status_code = status_code self.message = message super().__init__( self.message ) # Call the base class constructor with the parameters it needs def validate_environment(api_key): headers = { "accept": "application/json", "content-type": "application/json", } if api_key: headers["Authorization"] = f"Token {api_key}" return headers def completion( model: str, messages: list, api_base: Optional[str], model_response: ModelResponse, print_verbose: Callable, encoding, api_key, logging_obj, custom_prompt_dict={}, optional_params=None, litellm_params=None, logger_fn=None, default_max_tokens_to_sample=None, ): headers = validate_environment(api_key) if "https" in model: completion_url = model elif api_base: completion_url = api_base else: raise OobaboogaError(status_code=404, message="API Base not set. Set one via completion(..,api_base='your-api-url')") model = model if model in custom_prompt_dict: # check if the model has a registered custom prompt model_prompt_details = custom_prompt_dict[model] prompt = custom_prompt( role_dict=model_prompt_details["roles"], initial_prompt_value=model_prompt_details["initial_prompt_value"], final_prompt_value=model_prompt_details["final_prompt_value"], messages=messages ) else: prompt = prompt_factory(model=model, messages=messages) completion_url = completion_url + "/api/v1/generate" data = { "prompt": prompt, **optional_params, } ## LOGGING logging_obj.pre_call( input=prompt, api_key=api_key, additional_args={"complete_input_dict": data}, ) ## COMPLETION CALL response = requests.post( completion_url, headers=headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False ) if "stream" in optional_params and optional_params["stream"] == True: return response.iter_lines() else: ## LOGGING logging_obj.post_call( input=prompt, api_key=api_key, original_response=response.text, additional_args={"complete_input_dict": data}, ) print_verbose(f"raw model_response: {response.text}") ## RESPONSE OBJECT try: completion_response = response.json() except: raise OobaboogaError(message=response.text, status_code=response.status_code) if "error" in completion_response: raise OobaboogaError( message=completion_response["error"], status_code=response.status_code, ) else: try: model_response["choices"][0]["message"]["content"] = completion_response['results'][0]['text'] except: raise OobaboogaError(message=json.dumps(completion_response), status_code=response.status_code) ## CALCULATING USAGE prompt_tokens = len( encoding.encode(prompt) ) completion_tokens = len( encoding.encode(model_response["choices"][0]["message"]["content"]) ) model_response["created"] = int(time.time()) model_response["model"] = model usage = Usage( prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens ) model_response.usage = usage return model_response def embedding(): # logic for parsing in - calling - parsing out model embedding calls pass