import os, types import json from enum import Enum import requests import time from typing import Callable, Optional from litellm.utils import ModelResponse, Usage import litellm from .prompt_templates.factory import prompt_factory, custom_prompt import httpx class AnthropicConstants(Enum): HUMAN_PROMPT = "\n\nHuman: " AI_PROMPT = "\n\nAssistant: " class AnthropicError(Exception): def __init__(self, status_code, message): self.status_code = status_code self.message = message self.request = httpx.Request(method="POST", url="https://api.anthropic.com/v1/complete") self.response = httpx.Response(status_code=status_code, request=self.request) super().__init__( self.message ) # Call the base class constructor with the parameters it needs class AnthropicConfig(): """ Reference: https://docs.anthropic.com/claude/reference/complete_post to pass metadata to anthropic, it's {"user_id": "any-relevant-information"} """ max_tokens_to_sample: Optional[int]=litellm.max_tokens # anthropic requires a default stop_sequences: Optional[list]=None temperature: Optional[int]=None top_p: Optional[int]=None top_k: Optional[int]=None metadata: Optional[dict]=None def __init__(self, max_tokens_to_sample: Optional[int]=256, # anthropic requires a default stop_sequences: Optional[list]=None, temperature: Optional[int]=None, top_p: Optional[int]=None, top_k: Optional[int]=None, metadata: Optional[dict]=None) -> None: locals_ = locals() for key, value in locals_.items(): if key != 'self' and value is not None: setattr(self.__class__, key, value) @classmethod def get_config(cls): return {k: v for k, v in cls.__dict__.items() if not k.startswith('__') and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod)) and v is not None} # makes headers for API call def validate_environment(api_key): if api_key is None: raise ValueError( "Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params" ) headers = { "accept": "application/json", "anthropic-version": "2023-06-01", "content-type": "application/json", "x-api-key": api_key, } return headers def completion( model: str, messages: list, api_base: str, custom_prompt_dict: dict, model_response: ModelResponse, print_verbose: Callable, encoding, api_key, logging_obj, optional_params=None, litellm_params=None, logger_fn=None, ): headers = validate_environment(api_key) if model in custom_prompt_dict: # check if the model has a registered custom prompt model_prompt_details = custom_prompt_dict[model] prompt = custom_prompt( role_dict=model_prompt_details["roles"], initial_prompt_value=model_prompt_details["initial_prompt_value"], final_prompt_value=model_prompt_details["final_prompt_value"], messages=messages ) else: prompt = prompt_factory(model=model, messages=messages, custom_llm_provider="anthropic") ## Load Config config = litellm.AnthropicConfig.get_config() for k, v in config.items(): if k not in optional_params: # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in optional_params[k] = v data = { "model": model, "prompt": prompt, **optional_params, } ## LOGGING logging_obj.pre_call( input=prompt, api_key=api_key, additional_args={"complete_input_dict": data, "api_base": api_base}, ) ## COMPLETION CALL if "stream" in optional_params and optional_params["stream"] == True: response = requests.post( api_base, headers=headers, data=json.dumps(data), stream=optional_params["stream"], ) if response.status_code != 200: raise AnthropicError(status_code=response.status_code, message=response.text) return response.iter_lines() else: response = requests.post( api_base, headers=headers, data=json.dumps(data) ) if response.status_code != 200: raise AnthropicError(status_code=response.status_code, message=response.text) ## LOGGING logging_obj.post_call( input=prompt, api_key=api_key, original_response=response.text, additional_args={"complete_input_dict": data}, ) print_verbose(f"raw model_response: {response.text}") ## RESPONSE OBJECT try: completion_response = response.json() except: raise AnthropicError( message=response.text, status_code=response.status_code ) if "error" in completion_response: raise AnthropicError( message=str(completion_response["error"]), status_code=response.status_code, ) else: if len(completion_response["completion"]) > 0: model_response["choices"][0]["message"]["content"] = completion_response[ "completion" ] model_response.choices[0].finish_reason = completion_response["stop_reason"] ## CALCULATING USAGE prompt_tokens = len( encoding.encode(prompt) ) ##[TODO] use the anthropic tokenizer here completion_tokens = len( encoding.encode(model_response["choices"][0]["message"].get("content", "")) ) ##[TODO] use the anthropic tokenizer here model_response["created"] = int(time.time()) model_response["model"] = model usage = Usage( prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens ) model_response.usage = usage return model_response def embedding(): # logic for parsing in - calling - parsing out model embedding calls pass