|
import os |
|
import json |
|
from enum import Enum |
|
import requests |
|
import time, httpx |
|
from typing import Callable, Any |
|
from litellm.utils import ModelResponse, Usage |
|
from .prompt_templates.factory import prompt_factory, custom_prompt |
|
llm = None |
|
class VLLMError(Exception): |
|
def __init__(self, status_code, message): |
|
self.status_code = status_code |
|
self.message = message |
|
self.request = httpx.Request(method="POST", url="http://0.0.0.0:8000") |
|
self.response = httpx.Response(status_code=status_code, request=self.request) |
|
super().__init__( |
|
self.message |
|
) |
|
|
|
|
|
def validate_environment(model: str): |
|
global llm |
|
try: |
|
from vllm import LLM, SamplingParams |
|
if llm is None: |
|
llm = LLM(model=model) |
|
return llm, SamplingParams |
|
except Exception as e: |
|
raise VLLMError(status_code=0, message=str(e)) |
|
|
|
def completion( |
|
model: str, |
|
messages: list, |
|
model_response: ModelResponse, |
|
print_verbose: Callable, |
|
encoding, |
|
logging_obj, |
|
custom_prompt_dict={}, |
|
optional_params=None, |
|
litellm_params=None, |
|
logger_fn=None, |
|
): |
|
global llm |
|
try: |
|
llm, SamplingParams = validate_environment(model=model) |
|
except Exception as e: |
|
raise VLLMError(status_code=0, message=str(e)) |
|
sampling_params = SamplingParams(**optional_params) |
|
if model in custom_prompt_dict: |
|
|
|
model_prompt_details = custom_prompt_dict[model] |
|
prompt = custom_prompt( |
|
role_dict=model_prompt_details["roles"], |
|
initial_prompt_value=model_prompt_details["initial_prompt_value"], |
|
final_prompt_value=model_prompt_details["final_prompt_value"], |
|
messages=messages |
|
) |
|
else: |
|
prompt = prompt_factory(model=model, messages=messages) |
|
|
|
|
|
|
|
logging_obj.pre_call( |
|
input=prompt, |
|
api_key="", |
|
additional_args={"complete_input_dict": sampling_params}, |
|
) |
|
|
|
if llm: |
|
outputs = llm.generate(prompt, sampling_params) |
|
else: |
|
raise VLLMError(status_code=0, message="Need to pass in a model name to initialize vllm") |
|
|
|
|
|
|
|
if "stream" in optional_params and optional_params["stream"] == True: |
|
return iter(outputs) |
|
else: |
|
|
|
logging_obj.post_call( |
|
input=prompt, |
|
api_key="", |
|
original_response=outputs, |
|
additional_args={"complete_input_dict": sampling_params}, |
|
) |
|
print_verbose(f"raw model_response: {outputs}") |
|
|
|
model_response["choices"][0]["message"]["content"] = outputs[0].outputs[0].text |
|
|
|
|
|
prompt_tokens = len(outputs[0].prompt_token_ids) |
|
completion_tokens = len(outputs[0].outputs[0].token_ids) |
|
|
|
model_response["created"] = int(time.time()) |
|
model_response["model"] = model |
|
usage = Usage( |
|
prompt_tokens=prompt_tokens, |
|
completion_tokens=completion_tokens, |
|
total_tokens=prompt_tokens + completion_tokens |
|
) |
|
model_response.usage = usage |
|
return model_response |
|
|
|
def batch_completions( |
|
model: str, |
|
messages: list, |
|
optional_params=None, |
|
custom_prompt_dict={} |
|
): |
|
""" |
|
Example usage: |
|
import litellm |
|
import os |
|
from litellm import batch_completion |
|
|
|
|
|
responses = batch_completion( |
|
model="vllm/facebook/opt-125m", |
|
messages = [ |
|
[ |
|
{ |
|
"role": "user", |
|
"content": "good morning? " |
|
} |
|
], |
|
[ |
|
{ |
|
"role": "user", |
|
"content": "what's the time? " |
|
} |
|
] |
|
] |
|
) |
|
""" |
|
try: |
|
llm, SamplingParams = validate_environment(model=model) |
|
except Exception as e: |
|
error_str = str(e) |
|
if "data parallel group is already initialized" in error_str: |
|
pass |
|
else: |
|
raise VLLMError(status_code=0, message=error_str) |
|
sampling_params = SamplingParams(**optional_params) |
|
prompts = [] |
|
if model in custom_prompt_dict: |
|
|
|
model_prompt_details = custom_prompt_dict[model] |
|
for message in messages: |
|
prompt = custom_prompt( |
|
role_dict=model_prompt_details["roles"], |
|
initial_prompt_value=model_prompt_details["initial_prompt_value"], |
|
final_prompt_value=model_prompt_details["final_prompt_value"], |
|
messages=message |
|
) |
|
prompts.append(prompt) |
|
else: |
|
for message in messages: |
|
prompt = prompt_factory(model=model, messages=message) |
|
prompts.append(prompt) |
|
|
|
if llm: |
|
outputs = llm.generate(prompts, sampling_params) |
|
else: |
|
raise VLLMError(status_code=0, message="Need to pass in a model name to initialize vllm") |
|
|
|
final_outputs = [] |
|
for output in outputs: |
|
model_response = ModelResponse() |
|
|
|
model_response["choices"][0]["message"]["content"] = output.outputs[0].text |
|
|
|
|
|
prompt_tokens = len(output.prompt_token_ids) |
|
completion_tokens = len(output.outputs[0].token_ids) |
|
|
|
model_response["created"] = int(time.time()) |
|
model_response["model"] = model |
|
usage = Usage( |
|
prompt_tokens=prompt_tokens, |
|
completion_tokens=completion_tokens, |
|
total_tokens=prompt_tokens + completion_tokens |
|
) |
|
model_response.usage = usage |
|
final_outputs.append(model_response) |
|
return final_outputs |
|
|
|
def embedding(): |
|
|
|
pass |
|
|