|
import os, types |
|
import json |
|
from enum import Enum |
|
import requests |
|
import time |
|
from typing import Callable, Optional |
|
import litellm |
|
from litellm.utils import ModelResponse, Usage |
|
|
|
class NLPCloudError(Exception): |
|
def __init__(self, status_code, message): |
|
self.status_code = status_code |
|
self.message = message |
|
super().__init__( |
|
self.message |
|
) |
|
|
|
class NLPCloudConfig(): |
|
""" |
|
Reference: https://docs.nlpcloud.com/#generation |
|
|
|
- `max_length` (int): Optional. The maximum number of tokens that the generated text should contain. |
|
|
|
- `length_no_input` (boolean): Optional. Whether `min_length` and `max_length` should not include the length of the input text. |
|
|
|
- `end_sequence` (string): Optional. A specific token that should be the end of the generated sequence. |
|
|
|
- `remove_end_sequence` (boolean): Optional. Whether to remove the `end_sequence` string from the result. |
|
|
|
- `remove_input` (boolean): Optional. Whether to remove the input text from the result. |
|
|
|
- `bad_words` (list of strings): Optional. List of tokens that are not allowed to be generated. |
|
|
|
- `temperature` (float): Optional. Temperature sampling. It modulates the next token probabilities. |
|
|
|
- `top_p` (float): Optional. Top P sampling. Below 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation. |
|
|
|
- `top_k` (int): Optional. Top K sampling. The number of highest probability vocabulary tokens to keep for top k filtering. |
|
|
|
- `repetition_penalty` (float): Optional. Prevents the same word from being repeated too many times. |
|
|
|
- `num_beams` (int): Optional. Number of beams for beam search. |
|
|
|
- `num_return_sequences` (int): Optional. The number of independently computed returned sequences. |
|
""" |
|
max_length: Optional[int]=None |
|
length_no_input: Optional[bool]=None |
|
end_sequence: Optional[str]=None |
|
remove_end_sequence: Optional[bool]=None |
|
remove_input: Optional[bool]=None |
|
bad_words: Optional[list]=None |
|
temperature: Optional[float]=None |
|
top_p: Optional[float]=None |
|
top_k: Optional[int]=None |
|
repetition_penalty: Optional[float]=None |
|
num_beams: Optional[int]=None |
|
num_return_sequences: Optional[int]=None |
|
|
|
|
|
def __init__(self, |
|
max_length: Optional[int]=None, |
|
length_no_input: Optional[bool]=None, |
|
end_sequence: Optional[str]=None, |
|
remove_end_sequence: Optional[bool]=None, |
|
remove_input: Optional[bool]=None, |
|
bad_words: Optional[list]=None, |
|
temperature: Optional[float]=None, |
|
top_p: Optional[float]=None, |
|
top_k: Optional[int]=None, |
|
repetition_penalty: Optional[float]=None, |
|
num_beams: Optional[int]=None, |
|
num_return_sequences: Optional[int]=None) -> None: |
|
|
|
locals_ = locals() |
|
for key, value in locals_.items(): |
|
if key != 'self' and value is not None: |
|
setattr(self.__class__, key, value) |
|
|
|
@classmethod |
|
def get_config(cls): |
|
return {k: v for k, v in cls.__dict__.items() |
|
if not k.startswith('__') |
|
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod)) |
|
and v is not None} |
|
|
|
|
|
def validate_environment(api_key): |
|
headers = { |
|
"accept": "application/json", |
|
"content-type": "application/json", |
|
} |
|
if api_key: |
|
headers["Authorization"] = f"Token {api_key}" |
|
return headers |
|
|
|
def completion( |
|
model: str, |
|
messages: list, |
|
api_base: str, |
|
model_response: ModelResponse, |
|
print_verbose: Callable, |
|
encoding, |
|
api_key, |
|
logging_obj, |
|
optional_params=None, |
|
litellm_params=None, |
|
logger_fn=None, |
|
default_max_tokens_to_sample=None, |
|
): |
|
headers = validate_environment(api_key) |
|
|
|
|
|
config = litellm.NLPCloudConfig.get_config() |
|
for k, v in config.items(): |
|
if k not in optional_params: |
|
optional_params[k] = v |
|
|
|
completion_url_fragment_1 = api_base |
|
completion_url_fragment_2 = "/generation" |
|
model = model |
|
text = " ".join(message["content"] for message in messages) |
|
|
|
data = { |
|
"text": text, |
|
**optional_params, |
|
} |
|
|
|
completion_url = completion_url_fragment_1 + model + completion_url_fragment_2 |
|
|
|
|
|
logging_obj.pre_call( |
|
input=text, |
|
api_key=api_key, |
|
additional_args={"complete_input_dict": data, "headers": headers, "api_base": completion_url}, |
|
) |
|
|
|
response = requests.post( |
|
completion_url, headers=headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False |
|
) |
|
if "stream" in optional_params and optional_params["stream"] == True: |
|
return clean_and_iterate_chunks(response) |
|
else: |
|
|
|
logging_obj.post_call( |
|
input=text, |
|
api_key=api_key, |
|
original_response=response.text, |
|
additional_args={"complete_input_dict": data}, |
|
) |
|
print_verbose(f"raw model_response: {response.text}") |
|
|
|
try: |
|
completion_response = response.json() |
|
except: |
|
raise NLPCloudError(message=response.text, status_code=response.status_code) |
|
if "error" in completion_response: |
|
raise NLPCloudError( |
|
message=completion_response["error"], |
|
status_code=response.status_code, |
|
) |
|
else: |
|
try: |
|
if len(completion_response["generated_text"]) > 0: |
|
model_response["choices"][0]["message"]["content"] = completion_response["generated_text"] |
|
except: |
|
raise NLPCloudError(message=json.dumps(completion_response), status_code=response.status_code) |
|
|
|
|
|
prompt_tokens = completion_response["nb_input_tokens"] |
|
completion_tokens = completion_response["nb_generated_tokens"] |
|
|
|
model_response["created"] = int(time.time()) |
|
model_response["model"] = model |
|
usage = Usage( |
|
prompt_tokens=prompt_tokens, |
|
completion_tokens=completion_tokens, |
|
total_tokens=prompt_tokens + completion_tokens |
|
) |
|
model_response.usage = usage |
|
return model_response |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def clean_and_iterate_chunks(response): |
|
buffer = b'' |
|
|
|
for chunk in response.iter_content(chunk_size=1024): |
|
if not chunk: |
|
break |
|
|
|
buffer += chunk |
|
while b'\x00' in buffer: |
|
buffer = buffer.replace(b'\x00', b'') |
|
yield buffer.decode('utf-8') |
|
buffer = b'' |
|
|
|
|
|
if buffer: |
|
yield buffer.decode('utf-8') |
|
|
|
def embedding(): |
|
|
|
pass |
|
|