|
import os, types |
|
import json |
|
from enum import Enum |
|
import requests |
|
import time, traceback |
|
from typing import Callable, Optional, List |
|
from litellm.utils import ModelResponse, Choices, Message, Usage |
|
import litellm |
|
|
|
class MaritalkError(Exception): |
|
def __init__(self, status_code, message): |
|
self.status_code = status_code |
|
self.message = message |
|
super().__init__( |
|
self.message |
|
) |
|
|
|
class MaritTalkConfig(): |
|
""" |
|
The class `MaritTalkConfig` provides configuration for the MaritTalk's API interface. Here are the parameters: |
|
|
|
- `max_tokens` (integer): Maximum number of tokens the model will generate as part of the response. Default is 1. |
|
|
|
- `model` (string): The model used for conversation. Default is 'maritalk'. |
|
|
|
- `do_sample` (boolean): If set to True, the API will generate a response using sampling. Default is True. |
|
|
|
- `temperature` (number): A non-negative float controlling the randomness in generation. Lower temperatures result in less random generations. Default is 0.7. |
|
|
|
- `top_p` (number): Selection threshold for token inclusion based on cumulative probability. Default is 0.95. |
|
|
|
- `repetition_penalty` (number): Penalty for repetition in the generated conversation. Default is 1. |
|
|
|
- `stopping_tokens` (list of string): List of tokens where the conversation can be stopped/stopped. |
|
""" |
|
max_tokens: Optional[int] = None |
|
model: Optional[str] = None |
|
do_sample: Optional[bool] = None |
|
temperature: Optional[float] = None |
|
top_p: Optional[float] = None |
|
repetition_penalty: Optional[float] = None |
|
stopping_tokens: Optional[List[str]] = None |
|
|
|
def __init__(self, |
|
max_tokens: Optional[int]=None, |
|
model: Optional[str] = None, |
|
do_sample: Optional[bool] = None, |
|
temperature: Optional[float] = None, |
|
top_p: Optional[float] = None, |
|
repetition_penalty: Optional[float] = None, |
|
stopping_tokens: Optional[List[str]] = None) -> None: |
|
|
|
locals_ = locals() |
|
for key, value in locals_.items(): |
|
if key != 'self' and value is not None: |
|
setattr(self.__class__, key, value) |
|
|
|
@classmethod |
|
def get_config(cls): |
|
return {k: v for k, v in cls.__dict__.items() |
|
if not k.startswith('__') |
|
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod)) |
|
and v is not None} |
|
|
|
def validate_environment(api_key): |
|
headers = { |
|
"accept": "application/json", |
|
"content-type": "application/json", |
|
} |
|
if api_key: |
|
headers["Authorization"] = f"Key {api_key}" |
|
return headers |
|
|
|
def completion( |
|
model: str, |
|
messages: list, |
|
api_base: str, |
|
model_response: ModelResponse, |
|
print_verbose: Callable, |
|
encoding, |
|
api_key, |
|
logging_obj, |
|
optional_params=None, |
|
litellm_params=None, |
|
logger_fn=None, |
|
): |
|
headers = validate_environment(api_key) |
|
completion_url = api_base |
|
model = model |
|
|
|
|
|
config=litellm.MaritTalkConfig.get_config() |
|
for k, v in config.items(): |
|
if k not in optional_params: |
|
optional_params[k] = v |
|
|
|
data = { |
|
"messages": messages, |
|
**optional_params, |
|
} |
|
|
|
|
|
logging_obj.pre_call( |
|
input=messages, |
|
api_key=api_key, |
|
additional_args={"complete_input_dict": data}, |
|
) |
|
|
|
response = requests.post( |
|
completion_url, headers=headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False |
|
) |
|
if "stream" in optional_params and optional_params["stream"] == True: |
|
return response.iter_lines() |
|
else: |
|
|
|
logging_obj.post_call( |
|
input=messages, |
|
api_key=api_key, |
|
original_response=response.text, |
|
additional_args={"complete_input_dict": data}, |
|
) |
|
print_verbose(f"raw model_response: {response.text}") |
|
|
|
completion_response = response.json() |
|
if "error" in completion_response: |
|
raise MaritalkError( |
|
message=completion_response["error"], |
|
status_code=response.status_code, |
|
) |
|
else: |
|
try: |
|
if len(completion_response["answer"]) > 0: |
|
model_response["choices"][0]["message"]["content"] = completion_response["answer"] |
|
except Exception as e: |
|
raise MaritalkError(message=response.text, status_code=response.status_code) |
|
|
|
|
|
prompt = "".join(m["content"] for m in messages) |
|
prompt_tokens = len( |
|
encoding.encode(prompt) |
|
) |
|
completion_tokens = len( |
|
encoding.encode(model_response["choices"][0]["message"].get("content", "")) |
|
) |
|
|
|
model_response["created"] = int(time.time()) |
|
model_response["model"] = model |
|
usage = Usage( |
|
prompt_tokens=prompt_tokens, |
|
completion_tokens=completion_tokens, |
|
total_tokens=prompt_tokens + completion_tokens |
|
) |
|
model_response.usage = usage |
|
return model_response |
|
|
|
def embedding( |
|
model: str, |
|
input: list, |
|
api_key: Optional[str] = None, |
|
logging_obj=None, |
|
model_response=None, |
|
encoding=None, |
|
): |
|
pass |