|
import os, types |
|
import json |
|
from enum import Enum |
|
import requests |
|
import time, traceback |
|
from typing import Callable, Optional |
|
from litellm.utils import ModelResponse, Choices, Message, Usage |
|
import litellm |
|
import httpx |
|
|
|
class CohereError(Exception): |
|
def __init__(self, status_code, message): |
|
self.status_code = status_code |
|
self.message = message |
|
self.request = httpx.Request(method="POST", url="https://api.cohere.ai/v1/generate") |
|
self.response = httpx.Response(status_code=status_code, request=self.request) |
|
super().__init__( |
|
self.message |
|
) |
|
|
|
class CohereConfig(): |
|
""" |
|
Reference: https://docs.cohere.com/reference/generate |
|
|
|
The class `CohereConfig` provides configuration for the Cohere's API interface. Below are the parameters: |
|
|
|
- `num_generations` (integer): Maximum number of generations returned. Default is 1, with a minimum value of 1 and a maximum value of 5. |
|
|
|
- `max_tokens` (integer): Maximum number of tokens the model will generate as part of the response. Default value is 20. |
|
|
|
- `truncate` (string): Specifies how the API handles inputs longer than maximum token length. Options include NONE, START, END. Default is END. |
|
|
|
- `temperature` (number): A non-negative float controlling the randomness in generation. Lower temperatures result in less random generations. Default is 0.75. |
|
|
|
- `preset` (string): Identifier of a custom preset, a combination of parameters such as prompt, temperature etc. |
|
|
|
- `end_sequences` (array of strings): The generated text gets cut at the beginning of the earliest occurrence of an end sequence, which will be excluded from the text. |
|
|
|
- `stop_sequences` (array of strings): The generated text gets cut at the end of the earliest occurrence of a stop sequence, which will be included in the text. |
|
|
|
- `k` (integer): Limits generation at each step to top `k` most likely tokens. Default is 0. |
|
|
|
- `p` (number): Limits generation at each step to most likely tokens with total probability mass of `p`. Default is 0. |
|
|
|
- `frequency_penalty` (number): Reduces repetitiveness of generated tokens. Higher values apply stronger penalties to previously occurred tokens. |
|
|
|
- `presence_penalty` (number): Reduces repetitiveness of generated tokens. Similar to frequency_penalty, but this penalty applies equally to all tokens that have already appeared. |
|
|
|
- `return_likelihoods` (string): Specifies how and if token likelihoods are returned with the response. Options include GENERATION, ALL and NONE. |
|
|
|
- `logit_bias` (object): Used to prevent the model from generating unwanted tokens or to incentivize it to include desired tokens. e.g. {"hello_world": 1233} |
|
""" |
|
num_generations: Optional[int]=None |
|
max_tokens: Optional[int]=None |
|
truncate: Optional[str]=None |
|
temperature: Optional[int]=None |
|
preset: Optional[str]=None |
|
end_sequences: Optional[list]=None |
|
stop_sequences: Optional[list]=None |
|
k: Optional[int]=None |
|
p: Optional[int]=None |
|
frequency_penalty: Optional[int]=None |
|
presence_penalty: Optional[int]=None |
|
return_likelihoods: Optional[str]=None |
|
logit_bias: Optional[dict]=None |
|
|
|
def __init__(self, |
|
num_generations: Optional[int]=None, |
|
max_tokens: Optional[int]=None, |
|
truncate: Optional[str]=None, |
|
temperature: Optional[int]=None, |
|
preset: Optional[str]=None, |
|
end_sequences: Optional[list]=None, |
|
stop_sequences: Optional[list]=None, |
|
k: Optional[int]=None, |
|
p: Optional[int]=None, |
|
frequency_penalty: Optional[int]=None, |
|
presence_penalty: Optional[int]=None, |
|
return_likelihoods: Optional[str]=None, |
|
logit_bias: Optional[dict]=None) -> None: |
|
|
|
locals_ = locals() |
|
for key, value in locals_.items(): |
|
if key != 'self' and value is not None: |
|
setattr(self.__class__, key, value) |
|
|
|
@classmethod |
|
def get_config(cls): |
|
return {k: v for k, v in cls.__dict__.items() |
|
if not k.startswith('__') |
|
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod)) |
|
and v is not None} |
|
|
|
def validate_environment(api_key): |
|
headers = { |
|
"accept": "application/json", |
|
"content-type": "application/json", |
|
} |
|
if api_key: |
|
headers["Authorization"] = f"Bearer {api_key}" |
|
return headers |
|
|
|
def completion( |
|
model: str, |
|
messages: list, |
|
api_base: str, |
|
model_response: ModelResponse, |
|
print_verbose: Callable, |
|
encoding, |
|
api_key, |
|
logging_obj, |
|
optional_params=None, |
|
litellm_params=None, |
|
logger_fn=None, |
|
): |
|
headers = validate_environment(api_key) |
|
completion_url = api_base |
|
model = model |
|
prompt = " ".join(message["content"] for message in messages) |
|
|
|
|
|
config=litellm.CohereConfig.get_config() |
|
for k, v in config.items(): |
|
if k not in optional_params: |
|
optional_params[k] = v |
|
|
|
data = { |
|
"model": model, |
|
"prompt": prompt, |
|
**optional_params, |
|
} |
|
|
|
|
|
logging_obj.pre_call( |
|
input=prompt, |
|
api_key=api_key, |
|
additional_args={"complete_input_dict": data, "headers": headers, "api_base": completion_url}, |
|
) |
|
|
|
response = requests.post( |
|
completion_url, headers=headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False |
|
) |
|
|
|
if response.status_code!=200: |
|
raise CohereError(message=response.text, status_code=response.status_code) |
|
|
|
if "stream" in optional_params and optional_params["stream"] == True: |
|
return response.iter_lines() |
|
else: |
|
|
|
logging_obj.post_call( |
|
input=prompt, |
|
api_key=api_key, |
|
original_response=response.text, |
|
additional_args={"complete_input_dict": data}, |
|
) |
|
print_verbose(f"raw model_response: {response.text}") |
|
|
|
completion_response = response.json() |
|
if "error" in completion_response: |
|
raise CohereError( |
|
message=completion_response["error"], |
|
status_code=response.status_code, |
|
) |
|
else: |
|
try: |
|
choices_list = [] |
|
for idx, item in enumerate(completion_response["generations"]): |
|
if len(item["text"]) > 0: |
|
message_obj = Message(content=item["text"]) |
|
else: |
|
message_obj = Message(content=None) |
|
choice_obj = Choices(finish_reason=item["finish_reason"], index=idx+1, message=message_obj) |
|
choices_list.append(choice_obj) |
|
model_response["choices"] = choices_list |
|
except Exception as e: |
|
raise CohereError(message=response.text, status_code=response.status_code) |
|
|
|
|
|
prompt_tokens = len( |
|
encoding.encode(prompt) |
|
) |
|
completion_tokens = len( |
|
encoding.encode(model_response["choices"][0]["message"].get("content", "")) |
|
) |
|
|
|
model_response["created"] = int(time.time()) |
|
model_response["model"] = model |
|
usage = Usage( |
|
prompt_tokens=prompt_tokens, |
|
completion_tokens=completion_tokens, |
|
total_tokens=prompt_tokens + completion_tokens |
|
) |
|
model_response.usage = usage |
|
return model_response |
|
|
|
def embedding( |
|
model: str, |
|
input: list, |
|
api_key: Optional[str] = None, |
|
logging_obj=None, |
|
model_response=None, |
|
encoding=None, |
|
optional_params=None, |
|
): |
|
headers = validate_environment(api_key) |
|
embed_url = "https://api.cohere.ai/v1/embed" |
|
model = model |
|
data = { |
|
"model": model, |
|
"texts": input, |
|
**optional_params |
|
} |
|
|
|
if "3" in model and "input_type" not in data: |
|
|
|
data["input_type"] = "search_document" |
|
|
|
|
|
logging_obj.pre_call( |
|
input=input, |
|
api_key=api_key, |
|
additional_args={"complete_input_dict": data}, |
|
) |
|
|
|
response = requests.post( |
|
embed_url, headers=headers, data=json.dumps(data) |
|
) |
|
|
|
logging_obj.post_call( |
|
input=input, |
|
api_key=api_key, |
|
additional_args={"complete_input_dict": data}, |
|
original_response=response, |
|
) |
|
""" |
|
response |
|
{ |
|
'object': "list", |
|
'data': [ |
|
|
|
] |
|
'model', |
|
'usage' |
|
} |
|
""" |
|
if response.status_code!=200: |
|
raise CohereError(message=response.text, status_code=response.status_code) |
|
embeddings = response.json()['embeddings'] |
|
output_data = [] |
|
for idx, embedding in enumerate(embeddings): |
|
output_data.append( |
|
{ |
|
"object": "embedding", |
|
"index": idx, |
|
"embedding": embedding |
|
} |
|
) |
|
model_response["object"] = "list" |
|
model_response["data"] = output_data |
|
model_response["model"] = model |
|
input_tokens = 0 |
|
for text in input: |
|
input_tokens+=len(encoding.encode(text)) |
|
|
|
model_response["usage"] = { |
|
"prompt_tokens": input_tokens, |
|
"total_tokens": input_tokens, |
|
} |
|
return model_response |
|
|
|
|
|
|