nnnn / litellm /llms /azure.py
nonhuman's picture
Upload 165 files
395201c
from typing import Optional, Union, Any
import types, requests
from .base import BaseLLM
from litellm.utils import ModelResponse, Choices, Message, CustomStreamWrapper, convert_to_model_response_object
from typing import Callable, Optional
from litellm import OpenAIConfig
import litellm, json
import httpx
from openai import AzureOpenAI, AsyncAzureOpenAI
class AzureOpenAIError(Exception):
def __init__(self, status_code, message, request: Optional[httpx.Request]=None, response: Optional[httpx.Response]=None):
self.status_code = status_code
self.message = message
if request:
self.request = request
else:
self.request = httpx.Request(method="POST", url="https://api.openai.com/v1")
if response:
self.response = response
else:
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class AzureOpenAIConfig(OpenAIConfig):
"""
Reference: https://platform.openai.com/docs/api-reference/chat/create
The class `AzureOpenAIConfig` provides configuration for the OpenAI's Chat API interface, for use with Azure. It inherits from `OpenAIConfig`. Below are the parameters::
- `frequency_penalty` (number or null): Defaults to 0. Allows a value between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, thereby minimizing repetition.
- `function_call` (string or object): This optional parameter controls how the model calls functions.
- `functions` (array): An optional parameter. It is a list of functions for which the model may generate JSON inputs.
- `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion.
- `n` (integer or null): This optional parameter helps to set how many chat completion choices to generate for each input message.
- `presence_penalty` (number or null): Defaults to 0. It penalizes new tokens based on if they appear in the text so far, hence increasing the model's likelihood to talk about new topics.
- `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2.
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
"""
def __init__(self,
frequency_penalty: Optional[int] = None,
function_call: Optional[Union[str, dict]]= None,
functions: Optional[list]= None,
logit_bias: Optional[dict]= None,
max_tokens: Optional[int]= None,
n: Optional[int]= None,
presence_penalty: Optional[int]= None,
stop: Optional[Union[str,list]]=None,
temperature: Optional[int]= None,
top_p: Optional[int]= None) -> None:
super().__init__(frequency_penalty,
function_call,
functions,
logit_bias,
max_tokens,
n,
presence_penalty,
stop,
temperature,
top_p)
class AzureChatCompletion(BaseLLM):
def __init__(self) -> None:
super().__init__()
def validate_environment(self, api_key, azure_ad_token):
headers = {
"content-type": "application/json",
}
if api_key is not None:
headers["api-key"] = api_key
elif azure_ad_token is not None:
headers["Authorization"] = f"Bearer {azure_ad_token}"
return headers
def completion(self,
model: str,
messages: list,
model_response: ModelResponse,
api_key: str,
api_base: str,
api_version: str,
api_type: str,
azure_ad_token: str,
print_verbose: Callable,
timeout,
logging_obj,
optional_params,
litellm_params,
logger_fn,
acompletion: bool = False,
headers: Optional[dict]=None,
client = None,
):
super().completion()
exception_mapping_worked = False
try:
if model is None or messages is None:
raise AzureOpenAIError(status_code=422, message=f"Missing model or messages")
max_retries = optional_params.pop("max_retries", 2)
### CHECK IF CLOUDFLARE AI GATEWAY ###
### if so - set the model as part of the base url
if "gateway.ai.cloudflare.com" in api_base:
## build base url - assume api base includes resource name
if client is None:
if not api_base.endswith("/"):
api_base += "/"
api_base += f"{model}"
azure_client_params = {
"api_version": api_version,
"base_url": f"{api_base}",
"http_client": litellm.client_session,
"max_retries": max_retries,
"timeout": timeout
}
if api_key is not None:
azure_client_params["api_key"] = api_key
elif azure_ad_token is not None:
azure_client_params["azure_ad_token"] = azure_ad_token
if acompletion is True:
client = AsyncAzureOpenAI(**azure_client_params)
else:
client = AzureOpenAI(**azure_client_params)
data = {
"model": None,
"messages": messages,
**optional_params
}
else:
data = {
"model": model, # type: ignore
"messages": messages,
**optional_params
}
## LOGGING
logging_obj.pre_call(
input=messages,
api_key=api_key,
additional_args={
"headers": {
"api_key": api_key,
"azure_ad_token": azure_ad_token
},
"api_version": api_version,
"api_base": api_base,
"complete_input_dict": data,
},
)
if acompletion is True:
if optional_params.get("stream", False):
return self.async_streaming(logging_obj=logging_obj, api_base=api_base, data=data, model=model, api_key=api_key, api_version=api_version, azure_ad_token=azure_ad_token, timeout=timeout, client=client)
else:
return self.acompletion(api_base=api_base, data=data, model_response=model_response, api_key=api_key, api_version=api_version, model=model, azure_ad_token=azure_ad_token, timeout=timeout, client=client)
elif "stream" in optional_params and optional_params["stream"] == True:
return self.streaming(logging_obj=logging_obj, api_base=api_base, data=data, model=model, api_key=api_key, api_version=api_version, azure_ad_token=azure_ad_token, timeout=timeout, client=client)
else:
if not isinstance(max_retries, int):
raise AzureOpenAIError(status_code=422, message="max retries must be an int")
# init AzureOpenAI Client
azure_client_params = {
"api_version": api_version,
"azure_endpoint": api_base,
"azure_deployment": model,
"http_client": litellm.client_session,
"max_retries": max_retries,
"timeout": timeout
}
if api_key is not None:
azure_client_params["api_key"] = api_key
elif azure_ad_token is not None:
azure_client_params["azure_ad_token"] = azure_ad_token
if client is None:
azure_client = AzureOpenAI(**azure_client_params)
else:
azure_client = client
response = azure_client.chat.completions.create(**data) # type: ignore
response.model = "azure/" + str(response.model)
return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response)
except AzureOpenAIError as e:
exception_mapping_worked = True
raise e
except Exception as e:
raise e
async def acompletion(self,
api_key: str,
api_version: str,
model: str,
api_base: str,
data: dict,
timeout: Any,
model_response: ModelResponse,
azure_ad_token: Optional[str]=None,
client = None, # this is the AsyncAzureOpenAI
):
response = None
try:
max_retries = data.pop("max_retries", 2)
if not isinstance(max_retries, int):
raise AzureOpenAIError(status_code=422, message="max retries must be an int")
# init AzureOpenAI Client
azure_client_params = {
"api_version": api_version,
"azure_endpoint": api_base,
"azure_deployment": model,
"http_client": litellm.client_session,
"max_retries": max_retries,
"timeout": timeout
}
if api_key is not None:
azure_client_params["api_key"] = api_key
elif azure_ad_token is not None:
azure_client_params["azure_ad_token"] = azure_ad_token
if client is None:
azure_client = AsyncAzureOpenAI(**azure_client_params)
else:
azure_client = client
response = await azure_client.chat.completions.create(**data)
return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response)
except AzureOpenAIError as e:
exception_mapping_worked = True
raise e
except Exception as e:
raise e
def streaming(self,
logging_obj,
api_base: str,
api_key: str,
api_version: str,
data: dict,
model: str,
timeout: Any,
azure_ad_token: Optional[str]=None,
client=None,
):
max_retries = data.pop("max_retries", 2)
if not isinstance(max_retries, int):
raise AzureOpenAIError(status_code=422, message="max retries must be an int")
# init AzureOpenAI Client
azure_client_params = {
"api_version": api_version,
"azure_endpoint": api_base,
"azure_deployment": model,
"http_client": litellm.client_session,
"max_retries": max_retries,
"timeout": timeout
}
if api_key is not None:
azure_client_params["api_key"] = api_key
elif azure_ad_token is not None:
azure_client_params["azure_ad_token"] = azure_ad_token
if client is None:
azure_client = AzureOpenAI(**azure_client_params)
else:
azure_client = client
response = azure_client.chat.completions.create(**data)
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="azure",logging_obj=logging_obj)
return streamwrapper
async def async_streaming(self,
logging_obj,
api_base: str,
api_key: str,
api_version: str,
data: dict,
model: str,
timeout: Any,
azure_ad_token: Optional[str]=None,
client = None,
):
# init AzureOpenAI Client
azure_client_params = {
"api_version": api_version,
"azure_endpoint": api_base,
"azure_deployment": model,
"http_client": litellm.client_session,
"max_retries": data.pop("max_retries", 2),
"timeout": timeout
}
if api_key is not None:
azure_client_params["api_key"] = api_key
elif azure_ad_token is not None:
azure_client_params["azure_ad_token"] = azure_ad_token
if client is None:
azure_client = AsyncAzureOpenAI(**azure_client_params)
else:
azure_client = client
response = await azure_client.chat.completions.create(**data)
streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="azure",logging_obj=logging_obj)
async for transformed_chunk in streamwrapper:
yield transformed_chunk
async def aembedding(
self,
data: dict,
model_response: ModelResponse,
azure_client_params: dict,
client=None,
):
response = None
try:
if client is None:
openai_aclient = AsyncAzureOpenAI(**azure_client_params)
else:
openai_aclient = client
response = await openai_aclient.embeddings.create(**data)
return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response, response_type="embedding")
except Exception as e:
raise e
def embedding(self,
model: str,
input: list,
api_key: str,
api_base: str,
api_version: str,
timeout: float,
logging_obj=None,
model_response=None,
optional_params=None,
azure_ad_token: Optional[str]=None,
client = None,
aembedding=None,
):
super().embedding()
exception_mapping_worked = False
if self._client_session is None:
self._client_session = self.create_client_session()
try:
data = {
"model": model,
"input": input,
**optional_params
}
max_retries = data.pop("max_retries", 2)
if not isinstance(max_retries, int):
raise AzureOpenAIError(status_code=422, message="max retries must be an int")
# init AzureOpenAI Client
azure_client_params = {
"api_version": api_version,
"azure_endpoint": api_base,
"azure_deployment": model,
"http_client": litellm.client_session,
"max_retries": max_retries,
"timeout": timeout
}
if api_key is not None:
azure_client_params["api_key"] = api_key
elif azure_ad_token is not None:
azure_client_params["azure_ad_token"] = azure_ad_token
if aembedding == True:
response = self.aembedding(data=data, model_response=model_response, azure_client_params=azure_client_params)
return response
if client is None:
azure_client = AzureOpenAI(**azure_client_params) # type: ignore
else:
azure_client = client
## LOGGING
logging_obj.pre_call(
input=input,
api_key=api_key,
additional_args={
"complete_input_dict": data,
"headers": {
"api_key": api_key,
"azure_ad_token": azure_ad_token
}
},
)
## COMPLETION CALL
response = azure_client.embeddings.create(**data) # type: ignore
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data, "api_base": api_base},
original_response=response,
)
return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response, response_type="embedding") # type: ignore
except AzureOpenAIError as e:
exception_mapping_worked = True
raise e
except Exception as e:
if exception_mapping_worked:
raise e
else:
import traceback
raise AzureOpenAIError(status_code=500, message=traceback.format_exc())