nnnn / litellm /caching.py
nonhuman's picture
Upload 165 files
395201c
# +-----------------------------------------------+
# | |
# | Give Feedback / Get Help |
# | https://github.com/BerriAI/litellm/issues/new |
# | |
# +-----------------------------------------------+
#
# Thank you users! We ❤️ you! - Krrish & Ishaan
import litellm
import time, logging
import json, traceback, ast
from typing import Optional
def get_prompt(*args, **kwargs):
# make this safe checks, it should not throw any exceptions
if len(args) > 1:
messages = args[1]
prompt = " ".join(message["content"] for message in messages)
return prompt
if "messages" in kwargs:
messages = kwargs["messages"]
prompt = " ".join(message["content"] for message in messages)
return prompt
return None
def print_verbose(print_statement):
if litellm.set_verbose:
print(print_statement) # noqa
class BaseCache:
def set_cache(self, key, value, **kwargs):
raise NotImplementedError
def get_cache(self, key, **kwargs):
raise NotImplementedError
class InMemoryCache(BaseCache):
def __init__(self):
# if users don't provider one, use the default litellm cache
self.cache_dict = {}
self.ttl_dict = {}
def set_cache(self, key, value, **kwargs):
self.cache_dict[key] = value
if "ttl" in kwargs:
self.ttl_dict[key] = time.time() + kwargs["ttl"]
def get_cache(self, key, **kwargs):
if key in self.cache_dict:
if key in self.ttl_dict:
if time.time() > self.ttl_dict[key]:
self.cache_dict.pop(key, None)
return None
original_cached_response = self.cache_dict[key]
try:
cached_response = json.loads(original_cached_response)
except:
cached_response = original_cached_response
if isinstance(cached_response, dict):
cached_response['cache'] = True # set cache-hit flag to True
return cached_response
return None
def flush_cache(self):
self.cache_dict.clear()
self.ttl_dict.clear()
class RedisCache(BaseCache):
def __init__(self, host, port, password, **kwargs):
import redis
# if users don't provider one, use the default litellm cache
self.redis_client = redis.Redis(host=host, port=port, password=password, **kwargs)
def set_cache(self, key, value, **kwargs):
ttl = kwargs.get("ttl", None)
try:
self.redis_client.set(name=key, value=str(value), ex=ttl)
except Exception as e:
# NON blocking - notify users Redis is throwing an exception
logging.debug("LiteLLM Caching: set() - Got exception from REDIS : ", e)
def get_cache(self, key, **kwargs):
try:
# TODO convert this to a ModelResponse object
cached_response = self.redis_client.get(key)
if cached_response != None:
# cached_response is in `b{} convert it to ModelResponse
cached_response = cached_response.decode("utf-8") # Convert bytes to string
try:
cached_response = json.loads(cached_response) # Convert string to dictionary
except:
cached_response = ast.literal_eval(cached_response)
if isinstance(cached_response, dict):
cached_response['cache'] = True # set cache-hit flag to True
return cached_response
except Exception as e:
# NON blocking - notify users Redis is throwing an exception
traceback.print_exc()
logging.debug("LiteLLM Caching: get() - Got exception from REDIS: ", e)
def flush_cache(self):
self.redis_client.flushall()
class DualCache(BaseCache):
"""
This updates both Redis and an in-memory cache simultaneously.
When data is updated or inserted, it is written to both the in-memory cache + Redis.
This ensures that even if Redis hasn't been updated yet, the in-memory cache reflects the most recent data.
"""
def __init__(self, in_memory_cache: Optional[InMemoryCache] =None, redis_cache: Optional[RedisCache] =None) -> None:
super().__init__()
# If in_memory_cache is not provided, use the default InMemoryCache
self.in_memory_cache = in_memory_cache or InMemoryCache()
# If redis_cache is not provided, use the default RedisCache
self.redis_cache = redis_cache
def set_cache(self, key, value, **kwargs):
# Update both Redis and in-memory cache
try:
print_verbose(f"set cache: key: {key}; value: {value}")
if self.in_memory_cache is not None:
self.in_memory_cache.set_cache(key, value, **kwargs)
if self.redis_cache is not None:
self.redis_cache.set_cache(key, value, **kwargs)
except Exception as e:
print_verbose(e)
def get_cache(self, key, **kwargs):
# Try to fetch from in-memory cache first
try:
print_verbose(f"get cache: cache key: {key}")
result = None
if self.in_memory_cache is not None:
in_memory_result = self.in_memory_cache.get_cache(key, **kwargs)
if in_memory_result is not None:
result = in_memory_result
if self.redis_cache is not None:
# If not found in in-memory cache, try fetching from Redis
redis_result = self.redis_cache.get_cache(key, **kwargs)
if redis_result is not None:
# Update in-memory cache with the value from Redis
self.in_memory_cache.set_cache(key, redis_result, **kwargs)
result = redis_result
print_verbose(f"get cache: cache result: {result}")
return result
except Exception as e:
traceback.print_exc()
def flush_cache(self):
if self.in_memory_cache is not None:
self.in_memory_cache.flush_cache()
if self.redis_cache is not None:
self.redis_cache.flush_cache()
#### LiteLLM.Completion Cache ####
class Cache:
def __init__(
self,
type="local",
host=None,
port=None,
password=None,
**kwargs
):
"""
Initializes the cache based on the given type.
Args:
type (str, optional): The type of cache to initialize. Defaults to "local".
host (str, optional): The host address for the Redis cache. Required if type is "redis".
port (int, optional): The port number for the Redis cache. Required if type is "redis".
password (str, optional): The password for the Redis cache. Required if type is "redis".
**kwargs: Additional keyword arguments for redis.Redis() cache
Raises:
ValueError: If an invalid cache type is provided.
Returns:
None
"""
if type == "redis":
self.cache = RedisCache(host, port, password, **kwargs)
if type == "local":
self.cache = InMemoryCache()
if "cache" not in litellm.input_callback:
litellm.input_callback.append("cache")
if "cache" not in litellm.success_callback:
litellm.success_callback.append("cache")
def get_cache_key(self, *args, **kwargs):
"""
Get the cache key for the given arguments.
Args:
*args: args to litellm.completion() or embedding()
**kwargs: kwargs to litellm.completion() or embedding()
Returns:
str: The cache key generated from the arguments, or None if no cache key could be generated.
"""
cache_key =""
for param in kwargs:
# ignore litellm params here
if param in set(["model", "messages", "temperature", "top_p", "n", "stop", "max_tokens", "presence_penalty", "frequency_penalty", "logit_bias", "user", "response_format", "seed", "tools", "tool_choice"]):
# check if param == model and model_group is passed in, then override model with model_group
if param == "model" and kwargs.get("metadata", None) is not None and kwargs["metadata"].get("model_group", None) is not None:
param_value = kwargs["metadata"].get("model_group", None) # for litellm.Router use model_group for caching over `model`
else:
param_value = kwargs[param]
cache_key+= f"{str(param)}: {str(param_value)}"
return cache_key
def generate_streaming_content(self, content):
chunk_size = 5 # Adjust the chunk size as needed
for i in range(0, len(content), chunk_size):
yield {'choices': [{'delta': {'role': 'assistant', 'content': content[i:i + chunk_size]}}]}
time.sleep(0.02)
def get_cache(self, *args, **kwargs):
"""
Retrieves the cached result for the given arguments.
Args:
*args: args to litellm.completion() or embedding()
**kwargs: kwargs to litellm.completion() or embedding()
Returns:
The cached result if it exists, otherwise None.
"""
try: # never block execution
if "cache_key" in kwargs:
cache_key = kwargs["cache_key"]
else:
cache_key = self.get_cache_key(*args, **kwargs)
if cache_key is not None:
cached_result = self.cache.get_cache(cache_key)
if cached_result != None and 'stream' in kwargs and kwargs['stream'] == True:
# if streaming is true and we got a cache hit, return a generator
return self.generate_streaming_content(cached_result["choices"][0]['message']['content'])
return cached_result
except Exception as e:
logging.debug(f"An exception occurred: {traceback.format_exc()}")
return None
def add_cache(self, result, *args, **kwargs):
"""
Adds a result to the cache.
Args:
*args: args to litellm.completion() or embedding()
**kwargs: kwargs to litellm.completion() or embedding()
Returns:
None
"""
try:
if "cache_key" in kwargs:
cache_key = kwargs["cache_key"]
else:
cache_key = self.get_cache_key(*args, **kwargs)
if cache_key is not None:
if isinstance(result, litellm.ModelResponse):
result = result.model_dump_json()
self.cache.set_cache(cache_key, result, **kwargs)
except Exception as e:
pass