nnnn / litellm /tests /test_provider_specific_config.py
nonhuman's picture
Upload 165 files
395201c
raw
history blame
20.2 kB
#### What this tests ####
# This tests setting provider specific configs across providers
# There are 2 types of tests - changing config dynamically or by setting class variables
import sys, os
import traceback
import pytest
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import completion
from litellm import RateLimitError
# Huggingface - Expensive to deploy models and keep them running. Maybe we can try doing this via baseten??
# def hf_test_completion_tgi():
# litellm.HuggingfaceConfig(max_new_tokens=200)
# litellm.set_verbose=True
# try:
# # OVERRIDE WITH DYNAMIC MAX TOKENS
# response_1 = litellm.completion(
# model="huggingface/mistralai/Mistral-7B-Instruct-v0.1",
# messages=[{ "content": "Hello, how are you?","role": "user"}],
# api_base="https://n9ox93a8sv5ihsow.us-east-1.aws.endpoints.huggingface.cloud",
# max_tokens=10
# )
# # Add any assertions here to check the response
# print(response_1)
# response_1_text = response_1.choices[0].message.content
# # USE CONFIG TOKENS
# response_2 = litellm.completion(
# model="huggingface/mistralai/Mistral-7B-Instruct-v0.1",
# messages=[{ "content": "Hello, how are you?","role": "user"}],
# api_base="https://n9ox93a8sv5ihsow.us-east-1.aws.endpoints.huggingface.cloud",
# )
# # Add any assertions here to check the response
# print(response_2)
# response_2_text = response_2.choices[0].message.content
# assert len(response_2_text) > len(response_1_text)
# except Exception as e:
# pytest.fail(f"Error occurred: {e}")
# hf_test_completion_tgi()
#Anthropic
def claude_test_completion():
litellm.AnthropicConfig(max_tokens_to_sample=200)
# litellm.set_verbose=True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="claude-instant-1",
messages=[{ "content": "Hello, how are you?","role": "user"}],
max_tokens=10
)
# Add any assertions here to check the response
print(response_1)
response_1_text = response_1.choices[0].message.content
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="claude-instant-1",
messages=[{ "content": "Hello, how are you?","role": "user"}],
)
# Add any assertions here to check the response
print(response_2)
response_2_text = response_2.choices[0].message.content
assert len(response_2_text) > len(response_1_text)
try:
response_3 = litellm.completion(model="claude-instant-1",
messages=[{ "content": "Hello, how are you?","role": "user"}],
n=2)
except Exception as e:
print(e)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# claude_test_completion()
# Replicate
def replicate_test_completion():
litellm.ReplicateConfig(max_new_tokens=200)
# litellm.set_verbose=True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3",
messages=[{ "content": "Hello, how are you?","role": "user"}],
max_tokens=10
)
# Add any assertions here to check the response
print(response_1)
response_1_text = response_1.choices[0].message.content
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3",
messages=[{ "content": "Hello, how are you?","role": "user"}],
)
# Add any assertions here to check the response
print(response_2)
response_2_text = response_2.choices[0].message.content
assert len(response_2_text) > len(response_1_text)
try:
response_3 = litellm.completion(model="meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3",
messages=[{ "content": "Hello, how are you?","role": "user"}],
n=2)
except:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# replicate_test_completion()
# Cohere
def cohere_test_completion():
# litellm.CohereConfig(max_tokens=200)
litellm.set_verbose=True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="command-nightly",
messages=[{ "content": "Hello, how are you?","role": "user"}],
max_tokens=10
)
response_1_text = response_1.choices[0].message.content
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="command-nightly",
messages=[{ "content": "Hello, how are you?","role": "user"}],
)
response_2_text = response_2.choices[0].message.content
assert len(response_2_text) > len(response_1_text)
response_3 = litellm.completion(model="command-nightly",
messages=[{ "content": "Hello, how are you?","role": "user"}],
n=2)
assert len(response_3.choices) > 1
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# cohere_test_completion()
# AI21
def ai21_test_completion():
litellm.AI21Config(maxTokens=10)
litellm.set_verbose=True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="j2-mid",
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
max_tokens=100
)
response_1_text = response_1.choices[0].message.content
print(f"response_1_text: {response_1_text}")
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="j2-mid",
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
)
response_2_text = response_2.choices[0].message.content
print(f"response_2_text: {response_2_text}")
assert len(response_2_text) < len(response_1_text)
response_3 = litellm.completion(model="j2-light",
messages=[{ "content": "Hello, how are you?","role": "user"}],
n=2)
assert len(response_3.choices) > 1
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# ai21_test_completion()
# TogetherAI
def togetherai_test_completion():
litellm.TogetherAIConfig(max_tokens=10)
litellm.set_verbose=True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="together_ai/togethercomputer/llama-2-70b-chat",
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
max_tokens=100
)
response_1_text = response_1.choices[0].message.content
print(f"response_1_text: {response_1_text}")
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="together_ai/togethercomputer/llama-2-70b-chat",
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
)
response_2_text = response_2.choices[0].message.content
print(f"response_2_text: {response_2_text}")
assert len(response_2_text) < len(response_1_text)
try:
response_3 = litellm.completion(model="together_ai/togethercomputer/llama-2-70b-chat",
messages=[{ "content": "Hello, how are you?","role": "user"}],
n=2)
pytest.fail(f"Error not raised when n=2 passed to provider")
except:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# togetherai_test_completion()
# Palm
def palm_test_completion():
litellm.PalmConfig(max_output_tokens=10, temperature=0.9)
# litellm.set_verbose=True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="palm/chat-bison",
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
max_tokens=100
)
response_1_text = response_1.choices[0].message.content
print(f"response_1_text: {response_1_text}")
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="palm/chat-bison",
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
)
response_2_text = response_2.choices[0].message.content
print(f"response_2_text: {response_2_text}")
assert len(response_2_text) < len(response_1_text)
response_3 = litellm.completion(model="palm/chat-bison",
messages=[{ "content": "Hello, how are you?","role": "user"}],
n=2)
assert len(response_3.choices) > 1
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# palm_test_completion()
# NLP Cloud
def nlp_cloud_test_completion():
litellm.NLPCloudConfig(max_length=10)
# litellm.set_verbose=True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="dolphin",
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
max_tokens=100
)
response_1_text = response_1.choices[0].message.content
print(f"response_1_text: {response_1_text}")
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="dolphin",
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
)
response_2_text = response_2.choices[0].message.content
print(f"response_2_text: {response_2_text}")
assert len(response_2_text) < len(response_1_text)
try:
response_3 = litellm.completion(model="dolphin",
messages=[{ "content": "Hello, how are you?","role": "user"}],
n=2)
pytest.fail(f"Error not raised when n=2 passed to provider")
except:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# nlp_cloud_test_completion()
# AlephAlpha
def aleph_alpha_test_completion():
litellm.AlephAlphaConfig(maximum_tokens=10)
# litellm.set_verbose=True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="luminous-base",
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
max_tokens=100
)
response_1_text = response_1.choices[0].message.content
print(f"response_1_text: {response_1_text}")
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="luminous-base",
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
)
response_2_text = response_2.choices[0].message.content
print(f"response_2_text: {response_2_text}")
assert len(response_2_text) < len(response_1_text)
response_3 = litellm.completion(model="luminous-base",
messages=[{ "content": "Hello, how are you?","role": "user"}],
n=2)
assert len(response_3.choices) > 1
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# aleph_alpha_test_completion()
# Petals - calls are too slow, will cause circle ci to fail due to delay. Test locally.
# def petals_completion():
# litellm.PetalsConfig(max_new_tokens=10)
# # litellm.set_verbose=True
# try:
# # OVERRIDE WITH DYNAMIC MAX TOKENS
# response_1 = litellm.completion(
# model="petals/petals-team/StableBeluga2",
# messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
# api_base="https://chat.petals.dev/api/v1/generate",
# max_tokens=100
# )
# response_1_text = response_1.choices[0].message.content
# print(f"response_1_text: {response_1_text}")
# # USE CONFIG TOKENS
# response_2 = litellm.completion(
# model="petals/petals-team/StableBeluga2",
# api_base="https://chat.petals.dev/api/v1/generate",
# messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
# )
# response_2_text = response_2.choices[0].message.content
# print(f"response_2_text: {response_2_text}")
# assert len(response_2_text) < len(response_1_text)
# except Exception as e:
# pytest.fail(f"Error occurred: {e}")
# petals_completion()
# VertexAI
# We don't have vertex ai configured for circle ci yet -- need to figure this out.
# def vertex_ai_test_completion():
# litellm.VertexAIConfig(max_output_tokens=10)
# # litellm.set_verbose=True
# try:
# # OVERRIDE WITH DYNAMIC MAX TOKENS
# response_1 = litellm.completion(
# model="chat-bison",
# messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
# max_tokens=100
# )
# response_1_text = response_1.choices[0].message.content
# print(f"response_1_text: {response_1_text}")
# # USE CONFIG TOKENS
# response_2 = litellm.completion(
# model="chat-bison",
# messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
# )
# response_2_text = response_2.choices[0].message.content
# print(f"response_2_text: {response_2_text}")
# assert len(response_2_text) < len(response_1_text)
# except Exception as e:
# pytest.fail(f"Error occurred: {e}")
# vertex_ai_test_completion()
# Sagemaker
def sagemaker_test_completion():
litellm.SagemakerConfig(max_new_tokens=10)
# litellm.set_verbose=True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="sagemaker/jumpstart-dft-meta-textgeneration-llama-2-7b",
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
max_tokens=100
)
response_1_text = response_1.choices[0].message.content
print(f"response_1_text: {response_1_text}")
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="sagemaker/jumpstart-dft-meta-textgeneration-llama-2-7b",
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
)
response_2_text = response_2.choices[0].message.content
print(f"response_2_text: {response_2_text}")
assert len(response_2_text) < len(response_1_text)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# sagemaker_test_completion()
# Bedrock
def bedrock_test_completion():
litellm.AmazonCohereConfig(max_tokens=10)
# litellm.set_verbose=True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="bedrock/cohere.command-text-v14",
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
max_tokens=100
)
response_1_text = response_1.choices[0].message.content
print(f"response_1_text: {response_1_text}")
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="bedrock/cohere.command-text-v14",
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
)
response_2_text = response_2.choices[0].message.content
print(f"response_2_text: {response_2_text}")
assert len(response_2_text) < len(response_1_text)
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# bedrock_test_completion()
# OpenAI Chat Completion
def openai_test_completion():
litellm.OpenAIConfig(max_tokens=10)
# litellm.set_verbose=True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="gpt-3.5-turbo",
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
max_tokens=100
)
response_1_text = response_1.choices[0].message.content
print(f"response_1_text: {response_1_text}")
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="gpt-3.5-turbo",
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
)
response_2_text = response_2.choices[0].message.content
print(f"response_2_text: {response_2_text}")
assert len(response_2_text) < len(response_1_text)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# openai_test_completion()
# OpenAI Text Completion
def openai_text_completion_test():
litellm.OpenAITextCompletionConfig(max_tokens=10)
# litellm.set_verbose=True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="text-davinci-003",
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
max_tokens=100
)
response_1_text = response_1.choices[0].message.content
print(f"response_1_text: {response_1_text}")
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="text-davinci-003",
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
)
response_2_text = response_2.choices[0].message.content
print(f"response_2_text: {response_2_text}")
assert len(response_2_text) < len(response_1_text)
response_3 = litellm.completion(model="text-davinci-003",
messages=[{ "content": "Hello, how are you?","role": "user"}],
n=2)
assert len(response_3.choices) > 1
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# openai_text_completion_test()
# Azure OpenAI
def azure_openai_test_completion():
litellm.AzureOpenAIConfig(max_tokens=10)
# litellm.set_verbose=True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="azure/chatgpt-v-2",
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
max_tokens=100
)
response_1_text = response_1.choices[0].message.content
print(f"response_1_text: {response_1_text}")
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="azure/chatgpt-v-2",
messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
)
response_2_text = response_2.choices[0].message.content
print(f"response_2_text: {response_2_text}")
assert len(response_2_text) < len(response_1_text)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# azure_openai_test_completion()