nnnn / litellm /tests /test_ollama_local.py
nonhuman's picture
Upload 165 files
395201c
raw
history blame
4.67 kB
# ##### THESE TESTS CAN ONLY RUN LOCALLY WITH THE OLLAMA SERVER RUNNING ######
# # https://ollama.ai/
# import sys, os
# import traceback
# from dotenv import load_dotenv
# load_dotenv()
# import os
# sys.path.insert(0, os.path.abspath('../..')) # Adds the parent directory to the system path
# import pytest
# import litellm
# from litellm import embedding, completion
# import asyncio
# user_message = "respond in 20 words. who are you?"
# messages = [{ "content": user_message,"role": "user"}]
# def test_completion_ollama():
# try:
# response = completion(
# model="ollama/llama2",
# messages=messages,
# max_tokens=200,
# request_timeout = 10,
# )
# print(response)
# except Exception as e:
# pytest.fail(f"Error occurred: {e}")
# test_completion_ollama()
# def test_completion_ollama_with_api_base():
# try:
# response = completion(
# model="ollama/llama2",
# messages=messages,
# api_base="http://localhost:11434"
# )
# print(response)
# except Exception as e:
# pytest.fail(f"Error occurred: {e}")
# test_completion_ollama_with_api_base()
# def test_completion_ollama_custom_prompt_template():
# user_message = "what is litellm?"
# litellm.register_prompt_template(
# model="ollama/llama2",
# roles={
# "system": {"pre_message": "System: "},
# "user": {"pre_message": "User: "},
# "assistant": {"pre_message": "Assistant: "}
# }
# )
# messages = [{ "content": user_message,"role": "user"}]
# litellm.set_verbose = True
# try:
# response = completion(
# model="ollama/llama2",
# messages=messages,
# stream=True
# )
# print(response)
# for chunk in response:
# print(chunk)
# # print(chunk['choices'][0]['delta'])
# except Exception as e:
# traceback.print_exc()
# pytest.fail(f"Error occurred: {e}")
# test_completion_ollama_custom_prompt_template()
# async def test_completion_ollama_async_stream():
# user_message = "what is the weather"
# messages = [{ "content": user_message,"role": "user"}]
# try:
# response = await litellm.acompletion(
# model="ollama/llama2",
# messages=messages,
# api_base="http://localhost:11434",
# stream=True
# )
# async for chunk in response:
# print(chunk['choices'][0]['delta'])
# print("TEST ASYNC NON Stream")
# response = await litellm.acompletion(
# model="ollama/llama2",
# messages=messages,
# api_base="http://localhost:11434",
# )
# print(response)
# except Exception as e:
# pytest.fail(f"Error occurred: {e}")
# import asyncio
# asyncio.run(test_completion_ollama_async_stream())
# def prepare_messages_for_chat(text: str) -> list:
# messages = [
# {"role": "user", "content": text},
# ]
# return messages
# async def ask_question():
# params = {
# "messages": prepare_messages_for_chat("What is litellm? tell me 10 things about it who is sihaan.write an essay"),
# "api_base": "http://localhost:11434",
# "model": "ollama/llama2",
# "stream": True,
# }
# response = await litellm.acompletion(**params)
# return response
# async def main():
# response = await ask_question()
# async for chunk in response:
# print(chunk)
# print("test async completion without streaming")
# response = await litellm.acompletion(
# model="ollama/llama2",
# messages=prepare_messages_for_chat("What is litellm? respond in 2 words"),
# )
# print("response", response)
# def test_completion_expect_error():
# # this tests if we can exception map correctly for ollama
# print("making ollama request")
# # litellm.set_verbose=True
# user_message = "what is litellm?"
# messages = [{ "content": user_message,"role": "user"}]
# try:
# response = completion(
# model="ollama/invalid",
# messages=messages,
# stream=True
# )
# print(response)
# for chunk in response:
# print(chunk)
# # print(chunk['choices'][0]['delta'])
# except Exception as e:
# pass
# pytest.fail(f"Error occurred: {e}")
# test_completion_expect_error()
# if __name__ == "__main__":
# import asyncio
# asyncio.run(main())