File size: 99,503 Bytes
395201c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
# +-----------------------------------------------+
# |                                               |
# |           Give Feedback / Get Help            |
# | https://github.com/BerriAI/litellm/issues/new |
# |                                               |
# +-----------------------------------------------+
#
#  Thank you ! We ❤️ you! - Krrish & Ishaan 

import os, openai, sys, json, inspect, uuid, datetime, threading
from typing import Any
from functools import partial
import dotenv, traceback, random, asyncio, time, contextvars
from copy import deepcopy
import httpx
import litellm
from litellm import (  # type: ignore
    client,
    exception_type,
    get_optional_params,
    get_litellm_params,
    Logging,
)
from litellm.utils import (
    get_secret,
    CustomStreamWrapper,
    read_config_args,
    completion_with_fallbacks,
    get_llm_provider,
    get_api_key,
    mock_completion_streaming_obj, 
    convert_to_model_response_object, 
    token_counter, 
    Usage
)
from .llms import (
    anthropic,
    together_ai,
    ai21,
    sagemaker,
    bedrock,
    huggingface_restapi,
    replicate,
    aleph_alpha,
    nlp_cloud,
    baseten,
    vllm,
    ollama,
    cohere,
    petals,
    oobabooga,
    palm,
    vertex_ai,
    maritalk)
from .llms.openai import OpenAIChatCompletion, OpenAITextCompletion
from .llms.azure import AzureChatCompletion
from .llms.huggingface_restapi import Huggingface
from .llms.prompt_templates.factory import prompt_factory, custom_prompt, function_call_prompt
import tiktoken
from concurrent.futures import ThreadPoolExecutor
from typing import Callable, List, Optional, Dict, Union, Mapping

encoding = tiktoken.get_encoding("cl100k_base")
from litellm.utils import (
    get_secret,
    CustomStreamWrapper,
    TextCompletionStreamWrapper,
    ModelResponse,
    TextCompletionResponse,
    TextChoices,
    EmbeddingResponse,
    read_config_args,
    Choices, 
    Message
)

####### ENVIRONMENT VARIABLES ###################
dotenv.load_dotenv()  # Loading env variables using dotenv
openai_chat_completions = OpenAIChatCompletion()
openai_text_completions = OpenAITextCompletion()
azure_chat_completions = AzureChatCompletion()
huggingface = Huggingface()
####### COMPLETION ENDPOINTS ################

class LiteLLM:

  def __init__(self, *, 
               api_key=None, 
               organization: Optional[str] = None,
               base_url: Optional[str]= None,
               timeout: Optional[float] = 600,
               max_retries: Optional[int] = litellm.num_retries,
               default_headers: Optional[Mapping[str, str]] = None,):
    self.params = locals()
    self.chat = Chat(self.params)

class Chat():

  def __init__(self, params):
    self.params = params
    self.completions = Completions(self.params)

class Completions():
  
  def __init__(self, params):
    self.params = params

  def create(self, model, messages, **kwargs):
    for k, v in kwargs.items():
        self.params[k] = v
    response = completion(model=model, messages=messages, **self.params)
    return response

@client
async def acompletion(*args, **kwargs):
    """
    Asynchronously executes a litellm.completion() call for any of litellm supported llms (example gpt-4, gpt-3.5-turbo, claude-2, command-nightly)

    Parameters:
        model (str): The name of the language model to use for text completion. see all supported LLMs: https://docs.litellm.ai/docs/providers/
        messages (List): A list of message objects representing the conversation context (default is an empty list).

        OPTIONAL PARAMS
        functions (List, optional): A list of functions to apply to the conversation messages (default is an empty list).
        function_call (str, optional): The name of the function to call within the conversation (default is an empty string).
        temperature (float, optional): The temperature parameter for controlling the randomness of the output (default is 1.0).
        top_p (float, optional): The top-p parameter for nucleus sampling (default is 1.0).
        n (int, optional): The number of completions to generate (default is 1).
        stream (bool, optional): If True, return a streaming response (default is False).
        stop(string/list, optional): - Up to 4 sequences where the LLM API will stop generating further tokens.
        max_tokens (integer, optional): The maximum number of tokens in the generated completion (default is infinity).
        presence_penalty (float, optional): It is used to penalize new tokens based on their existence in the text so far.
        frequency_penalty: It is used to penalize new tokens based on their frequency in the text so far.
        logit_bias (dict, optional): Used to modify the probability of specific tokens appearing in the completion.
        user (str, optional):  A unique identifier representing your end-user. This can help the LLM provider to monitor and detect abuse.
        metadata (dict, optional): Pass in additional metadata to tag your completion calls - eg. prompt version, details, etc. 
        api_base (str, optional): Base URL for the API (default is None).
        api_version (str, optional): API version (default is None).
        api_key (str, optional): API key (default is None).
        model_list (list, optional): List of api base, version, keys

        LITELLM Specific Params
        mock_response (str, optional): If provided, return a mock completion response for testing or debugging purposes (default is None).
        force_timeout (int, optional): The maximum execution time in seconds for the completion request (default is 600).
        custom_llm_provider (str, optional): Used for Non-OpenAI LLMs, Example usage for bedrock, set model="amazon.titan-tg1-large" and custom_llm_provider="bedrock"
    Returns:
        ModelResponse: A response object containing the generated completion and associated metadata.

    Notes:
        - This function is an asynchronous version of the `completion` function.
        - The `completion` function is called using `run_in_executor` to execute synchronously in the event loop.
        - If `stream` is True, the function returns an async generator that yields completion lines.
    """
    loop = asyncio.get_event_loop()
    model = args[0] if len(args) > 0 else kwargs["model"]
    ### PASS ARGS TO COMPLETION ### 
    kwargs["acompletion"] = True
    custom_llm_provider = None
    try: 
        # Use a partial function to pass your keyword arguments
        func = partial(completion, *args, **kwargs)

        # Add the context to the function
        ctx = contextvars.copy_context()
        func_with_context = partial(ctx.run, func)

        _, custom_llm_provider, _, _ = get_llm_provider(model=model, api_base=kwargs.get("api_base", None))

        if (custom_llm_provider == "openai" 
            or custom_llm_provider == "azure" 
            or custom_llm_provider == "custom_openai"
            or custom_llm_provider == "anyscale"
            or custom_llm_provider == "openrouter"
            or custom_llm_provider == "deepinfra"
            or custom_llm_provider == "perplexity"
            or custom_llm_provider == "text-completion-openai"
            or custom_llm_provider == "huggingface"): # currently implemented aiohttp calls for just azure and openai, soon all. 
            if kwargs.get("stream", False): 
                response = completion(*args, **kwargs)
            else:
                # Await normally
                init_response = await loop.run_in_executor(None, func_with_context)
                if isinstance(init_response, dict) or isinstance(init_response, ModelResponse): ## CACHING SCENARIO 
                    response = init_response
                elif asyncio.iscoroutine(init_response):
                    response = await init_response
        else: 
            # Call the synchronous function using run_in_executor
            response =  await loop.run_in_executor(None, func_with_context)
        if kwargs.get("stream", False): # return an async generator
            return _async_streaming(response=response, model=model, custom_llm_provider=custom_llm_provider, args=args)
        else: 
            return response
    except Exception as e: 
        custom_llm_provider = custom_llm_provider or "openai"
        raise exception_type(
                model=model, custom_llm_provider=custom_llm_provider, original_exception=e, completion_kwargs=args,
            )

async def _async_streaming(response, model, custom_llm_provider, args): 
    try: 
        async for line in response: 
            yield line
    except Exception as e: 
        raise exception_type(
                model=model, custom_llm_provider=custom_llm_provider, original_exception=e, completion_kwargs=args,
            )

def mock_completion(model: str, messages: List, stream: Optional[bool] = False, mock_response: str = "This is a mock request", **kwargs):
    """
    Generate a mock completion response for testing or debugging purposes.

    This is a helper function that simulates the response structure of the OpenAI completion API.

    Parameters:
        model (str): The name of the language model for which the mock response is generated.
        messages (List): A list of message objects representing the conversation context.
        stream (bool, optional): If True, returns a mock streaming response (default is False).
        mock_response (str, optional): The content of the mock response (default is "This is a mock request").
        **kwargs: Additional keyword arguments that can be used but are not required.

    Returns:
        litellm.ModelResponse: A ModelResponse simulating a completion response with the specified model, messages, and mock response.

    Raises:
        Exception: If an error occurs during the generation of the mock completion response.

    Note:
        - This function is intended for testing or debugging purposes to generate mock completion responses.
        - If 'stream' is True, it returns a response that mimics the behavior of a streaming completion.
    """
    try:
        model_response = ModelResponse(stream=stream)
        if stream is True:
            # don't try to access stream object,
            response = mock_completion_streaming_obj(model_response, mock_response=mock_response, model=model)
            return response
        
        model_response["choices"][0]["message"]["content"] = mock_response
        model_response["created"] = int(time.time())
        model_response["model"] = model
        return model_response

    except:
        traceback.print_exc()
        raise Exception("Mock completion response failed")

@client
def completion(
    model: str,
    # Optional OpenAI params: see https://platform.openai.com/docs/api-reference/chat/create
    messages: List = [],
    functions: List = [],
    function_call: str = "",  # optional params
    timeout: Optional[Union[float, int]] = None,
    temperature: Optional[float] = None,
    top_p: Optional[float] = None,
    n: Optional[int] = None,
    stream: Optional[bool] = None,
    stop=None,
    max_tokens: Optional[float] = None,
    presence_penalty: Optional[float] = None,
    frequency_penalty: Optional[float]=None,
    logit_bias: Optional[dict] = None,
    user: Optional[str] = None,
    # openai v1.0+ new params
    response_format: Optional[dict] = None,
    seed: Optional[int] = None,
    tools: Optional[List] = None,
    tool_choice: Optional[str] = None,
    deployment_id = None,
    # set api_base, api_version, api_key
    base_url: Optional[str] = None,
    api_version: Optional[str] = None,
    api_key: Optional[str] = None,
    model_list: Optional[list] = None, # pass in a list of api_base,keys, etc. 

    # Optional liteLLM function params
    **kwargs,
) -> ModelResponse:
    """
    Perform a completion() using any of litellm supported llms (example gpt-4, gpt-3.5-turbo, claude-2, command-nightly)
    Parameters:
        model (str): The name of the language model to use for text completion. see all supported LLMs: https://docs.litellm.ai/docs/providers/
        messages (List): A list of message objects representing the conversation context (default is an empty list).

        OPTIONAL PARAMS
        functions (List, optional): A list of functions to apply to the conversation messages (default is an empty list).
        function_call (str, optional): The name of the function to call within the conversation (default is an empty string).
        temperature (float, optional): The temperature parameter for controlling the randomness of the output (default is 1.0).
        top_p (float, optional): The top-p parameter for nucleus sampling (default is 1.0).
        n (int, optional): The number of completions to generate (default is 1).
        stream (bool, optional): If True, return a streaming response (default is False).
        stop(string/list, optional): - Up to 4 sequences where the LLM API will stop generating further tokens.
        max_tokens (integer, optional): The maximum number of tokens in the generated completion (default is infinity).
        presence_penalty (float, optional): It is used to penalize new tokens based on their existence in the text so far.
        frequency_penalty: It is used to penalize new tokens based on their frequency in the text so far.
        logit_bias (dict, optional): Used to modify the probability of specific tokens appearing in the completion.
        user (str, optional):  A unique identifier representing your end-user. This can help the LLM provider to monitor and detect abuse.
        metadata (dict, optional): Pass in additional metadata to tag your completion calls - eg. prompt version, details, etc. 
        api_base (str, optional): Base URL for the API (default is None).
        api_version (str, optional): API version (default is None).
        api_key (str, optional): API key (default is None).
        model_list (list, optional): List of api base, version, keys

        LITELLM Specific Params
        mock_response (str, optional): If provided, return a mock completion response for testing or debugging purposes (default is None).
        custom_llm_provider (str, optional): Used for Non-OpenAI LLMs, Example usage for bedrock, set model="amazon.titan-tg1-large" and custom_llm_provider="bedrock"
        max_retries (int, optional): The number of retries to attempt (default is 0).
    Returns:
        ModelResponse: A response object containing the generated completion and associated metadata.

    Note:
        - This function is used to perform completions() using the specified language model.
        - It supports various optional parameters for customizing the completion behavior.
        - If 'mock_response' is provided, a mock completion response is returned for testing or debugging.
    """
    ######### unpacking kwargs #####################
    args = locals()
    api_base = kwargs.get('api_base', None)
    return_async = kwargs.get('return_async', False)
    mock_response = kwargs.get('mock_response', None)
    force_timeout= kwargs.get('force_timeout', 600) ## deprecated
    logger_fn = kwargs.get('logger_fn', None)
    verbose = kwargs.get('verbose', False)
    custom_llm_provider = kwargs.get('custom_llm_provider', None)
    litellm_logging_obj = kwargs.get('litellm_logging_obj', None)
    id = kwargs.get('id', None)
    metadata = kwargs.get('metadata', None)
    fallbacks = kwargs.get('fallbacks', None)
    headers = kwargs.get("headers", None)
    num_retries = kwargs.get("num_retries", None) ## deprecated
    max_retries = kwargs.get("max_retries", None)
    context_window_fallback_dict = kwargs.get("context_window_fallback_dict", None)
    ### CUSTOM MODEL COST ### 
    input_cost_per_token = kwargs.get("input_cost_per_token", None)
    output_cost_per_token = kwargs.get("output_cost_per_token", None)
    ### CUSTOM PROMPT TEMPLATE ### 
    initial_prompt_value = kwargs.get("initial_prompt_value", None)
    roles = kwargs.get("roles", None)
    final_prompt_value = kwargs.get("final_prompt_value", None)
    bos_token = kwargs.get("bos_token", None)
    eos_token = kwargs.get("eos_token", None)
    acompletion = kwargs.get("acompletion", False)
    client = kwargs.get("client", None)
    ######## end of unpacking kwargs ###########
    openai_params = ["functions", "function_call", "temperature", "temperature", "top_p", "n", "stream", "stop", "max_tokens", "presence_penalty", "frequency_penalty", "logit_bias", "user", "request_timeout", "api_base", "api_version", "api_key", "deployment_id", "organization", "base_url", "default_headers", "timeout", "response_format", "seed", "tools", "tool_choice", "max_retries"]
    litellm_params = ["metadata", "acompletion", "caching", "return_async", "mock_response", "api_key", "api_version", "api_base", "force_timeout", "logger_fn", "verbose", "custom_llm_provider", "litellm_logging_obj", "litellm_call_id", "use_client", "id", "fallbacks", "azure", "headers", "model_list", "num_retries", "context_window_fallback_dict", "roles", "final_prompt_value", "bos_token", "eos_token", "request_timeout", "complete_response", "self", "client", "rpm", "tpm", "input_cost_per_token", "output_cost_per_token"]
    default_params = openai_params + litellm_params
    non_default_params = {k: v for k,v in kwargs.items() if k not in default_params} # model-specific params - pass them straight to the model/provider
    if mock_response:
        return mock_completion(model, messages, stream=stream, mock_response=mock_response)
    if timeout is None:
        timeout = kwargs.get("request_timeout", None) or 600 # set timeout for 10 minutes by default 
    timeout = float(timeout)
    try:
        if base_url is not None: 
            api_base = base_url
        if max_retries is not None: # openai allows openai.OpenAI(max_retries=3)
            num_retries = max_retries
        logging = litellm_logging_obj
        fallbacks = (
            fallbacks
            or litellm.model_fallbacks
        )
        if fallbacks is not None:
            return completion_with_fallbacks(**args)
        if model_list is not None: 
            deployments = [m["litellm_params"] for m in model_list if m["model_name"] == model]
            return batch_completion_models(deployments=deployments, **args)
        if litellm.model_alias_map and model in litellm.model_alias_map:
            model = litellm.model_alias_map[
                model
            ]  # update the model to the actual value if an alias has been passed in
        model_response = ModelResponse()
        if kwargs.get('azure', False) == True: # don't remove flag check, to remain backwards compatible for repos like Codium
            custom_llm_provider="azure"
        if deployment_id != None: # azure llms 
                model=deployment_id
                custom_llm_provider="azure"
        model, custom_llm_provider, dynamic_api_key, api_base = get_llm_provider(model=model, custom_llm_provider=custom_llm_provider, api_base=api_base, api_key=api_key)
        
        ### REGISTER CUSTOM MODEL PRICING -- IF GIVEN ###
        if input_cost_per_token is not None and output_cost_per_token is not None: 
            litellm.register_model({
                model: {
                    "input_cost_per_token": input_cost_per_token,
                    "output_cost_per_token": output_cost_per_token,
                    "litellm_provider": custom_llm_provider
                }
            })
        ### BUILD CUSTOM PROMPT TEMPLATE -- IF GIVEN ###
        custom_prompt_dict = {} # type: ignore
        if initial_prompt_value or roles or final_prompt_value or bos_token or eos_token:
            custom_prompt_dict = {model: {}}
            if initial_prompt_value:
                custom_prompt_dict[model]["initial_prompt_value"] = initial_prompt_value
            if roles: 
                custom_prompt_dict[model]["roles"] = roles
            if final_prompt_value: 
                custom_prompt_dict[model]["final_prompt_value"] = final_prompt_value
            if bos_token:
                custom_prompt_dict[model]["bos_token"] = bos_token
            if eos_token:
                custom_prompt_dict[model]["eos_token"] = eos_token
        model_api_key = get_api_key(llm_provider=custom_llm_provider, dynamic_api_key=api_key) # get the api key from the environment if required for the model
        if model_api_key and "sk-litellm" in model_api_key:
            api_base = "https://proxy.litellm.ai"
            custom_llm_provider = "openai" 
            api_key = model_api_key

        if dynamic_api_key is not None:  
            api_key = dynamic_api_key 
        # check if user passed in any of the OpenAI optional params
        optional_params = get_optional_params(
                functions=functions,
                function_call=function_call,
                temperature=temperature,
                top_p=top_p,
                n=n,
                stream=stream,
                stop=stop,
                max_tokens=max_tokens,
                presence_penalty=presence_penalty,
                frequency_penalty=frequency_penalty,
                logit_bias=logit_bias,
                user=user,
                # params to identify the model
                model=model,
                custom_llm_provider=custom_llm_provider,
                response_format=response_format,
                seed=seed,
                tools=tools,
                tool_choice=tool_choice,
                max_retries=max_retries,
                **non_default_params 
            )
        
        if litellm.add_function_to_prompt and optional_params.get("functions_unsupported_model", None):  # if user opts to add it to prompt, when API doesn't support function calling 
            functions_unsupported_model = optional_params.pop("functions_unsupported_model")
            messages = function_call_prompt(messages=messages, functions=functions_unsupported_model)

        # For logging - save the values of the litellm-specific params passed in
        litellm_params = get_litellm_params(
            return_async=return_async,
            api_key=api_key,
            force_timeout=force_timeout,
            logger_fn=logger_fn,
            verbose=verbose,
            custom_llm_provider=custom_llm_provider,
            api_base=api_base,
            litellm_call_id=kwargs.get('litellm_call_id', None),
            model_alias_map=litellm.model_alias_map,
            completion_call_id=id,
            metadata=metadata
        )
        logging.update_environment_variables(model=model, user=user, optional_params=optional_params, litellm_params=litellm_params)
        if custom_llm_provider == "azure":
            # azure configs
            api_type = get_secret("AZURE_API_TYPE") or "azure"

            api_base = (
                api_base
                or litellm.api_base
                or get_secret("AZURE_API_BASE")
            )

            api_version = (
                api_version or
                litellm.api_version or
                get_secret("AZURE_API_VERSION")
            )

            api_key = (
                api_key or
                litellm.api_key or
                litellm.azure_key or
                get_secret("AZURE_OPENAI_API_KEY") or
                get_secret("AZURE_API_KEY")
            )

            azure_ad_token = (
                optional_params.pop("azure_ad_token", None) or
                get_secret("AZURE_AD_TOKEN")
            )

            headers = (
                headers or
                litellm.headers
            )

            ## LOAD CONFIG - if set
            config=litellm.AzureOpenAIConfig.get_config()
            for k, v in config.items():
                if k not in optional_params: # completion(top_k=3) > azure_config(top_k=3) <- allows for dynamic variables to be passed in
                    optional_params[k] = v

            ## COMPLETION CALL
            response = azure_chat_completions.completion(
                model=model,
                messages=messages,
                headers=headers,
                api_key=api_key,
                api_base=api_base,
                api_version=api_version,
                api_type=api_type,
                azure_ad_token=azure_ad_token,
                model_response=model_response,
                print_verbose=print_verbose,
                optional_params=optional_params,
                litellm_params=litellm_params,
                logger_fn=logger_fn,
                logging_obj=logging, 
                acompletion=acompletion, 
                timeout=timeout,
                client=client # pass AsyncAzureOpenAI, AzureOpenAI client
            )

            ## LOGGING
            logging.post_call(
                input=messages,
                api_key=api_key,
                original_response=response,
                additional_args={
                    "headers": headers,
                    "api_version": api_version,
                    "api_base": api_base,
                },
            )
        elif (
            model in litellm.open_ai_chat_completion_models
            or custom_llm_provider == "custom_openai"
            or custom_llm_provider == "deepinfra"
            or custom_llm_provider == "perplexity"
            or custom_llm_provider == "anyscale"
            or custom_llm_provider == "openai"
            or "ft:gpt-3.5-turbo" in model  # finetune gpt-3.5-turbo
        ):  # allow user to make an openai call with a custom base
            # note: if a user sets a custom base - we should ensure this works
            # allow for the setting of dynamic and stateful api-bases
            api_base = (
                api_base # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api base from there
                or litellm.api_base
                or get_secret("OPENAI_API_BASE")
                or "https://api.openai.com/v1"
            )
            openai.organization = (
                litellm.organization
                or get_secret("OPENAI_ORGANIZATION")
                or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
            )
            # set API KEY
            api_key = (
                api_key or # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
                litellm.api_key or
                litellm.openai_key or
                get_secret("OPENAI_API_KEY")
            )

            headers = (
                    headers or
                    litellm.headers
            )

            ## LOAD CONFIG - if set
            config=litellm.OpenAIConfig.get_config()
            for k, v in config.items():
                if k not in optional_params: # completion(top_k=3) > openai_config(top_k=3) <- allows for dynamic variables to be passed in
                    optional_params[k] = v

            ## COMPLETION CALL
            try:
                response = openai_chat_completions.completion(
                    model=model,
                    messages=messages,
                    model_response=model_response,
                    print_verbose=print_verbose,
                    api_key=api_key,
                    api_base=api_base,
                    acompletion=acompletion,
                    logging_obj=logging,
                    optional_params=optional_params,
                    litellm_params=litellm_params,
                    logger_fn=logger_fn,
                    timeout=timeout,
                    custom_prompt_dict=custom_prompt_dict,
                    client=client # pass AsyncOpenAI, OpenAI client
                )
            except Exception as e:
                ## LOGGING - log the original exception returned
                logging.post_call(
                    input=messages,
                    api_key=api_key,
                    original_response=str(e),
                    additional_args={"headers": headers},
                )
                raise e

            ## LOGGING
            logging.post_call(
                input=messages,
                api_key=api_key,
                original_response=response,
                additional_args={"headers": headers},
            )
        elif (
            custom_llm_provider == "text-completion-openai"
            or "ft:babbage-002" in model
            or "ft:davinci-002" in model  # support for finetuned completion models
        ):
            # print("calling custom openai provider")
            openai.api_type = "openai"

            api_base = (
                api_base
                or litellm.api_base
                or get_secret("OPENAI_API_BASE")
                or "https://api.openai.com/v1"
            )

            openai.api_version = None
            # set API KEY

            api_key = (
                api_key or
                litellm.api_key or
                litellm.openai_key or
                get_secret("OPENAI_API_KEY")
            )

            headers = (
                headers or
                litellm.headers
            )

            ## LOAD CONFIG - if set
            config=litellm.OpenAITextCompletionConfig.get_config()
            for k, v in config.items():
                if k not in optional_params: # completion(top_k=3) > openai_text_config(top_k=3) <- allows for dynamic variables to be passed in
                    optional_params[k] = v
            if litellm.organization:
                openai.organization = litellm.organization

            if len(messages)>0 and "content" in messages[0] and type(messages[0]["content"]) == list: 
                # text-davinci-003 can accept a string or array, if it's an array, assume the array is set in messages[0]['content']
                # https://platform.openai.com/docs/api-reference/completions/create
                prompt = messages[0]["content"]
            else:
                prompt = " ".join([message["content"] for message in messages]) # type: ignore
            ## LOGGING
            logging.pre_call(
                input=prompt,
                api_key=api_key,
                additional_args={
                    "openai_organization": litellm.organization,
                    "headers": headers,
                    "api_base": api_base,
                    "api_type": openai.api_type,
                },
            )
            ## COMPLETION CALL
            model_response = openai_text_completions.completion(
                model=model,
                messages=messages,
                model_response=model_response,
                print_verbose=print_verbose,
                api_key=api_key,
                api_base=api_base,
                acompletion=acompletion,
                logging_obj=logging,
                optional_params=optional_params,
                litellm_params=litellm_params,
                logger_fn=logger_fn
            )
            
            # if "stream" in optional_params and optional_params["stream"] == True:
            #     response = CustomStreamWrapper(model_response, model, custom_llm_provider="text-completion-openai", logging_obj=logging)
            #     return response
            response = model_response
        elif (
            "replicate" in model or 
            custom_llm_provider == "replicate" or
            model in litellm.replicate_models
        ):
            # Setting the relevant API KEY for replicate, replicate defaults to using os.environ.get("REPLICATE_API_TOKEN")
            replicate_key = None
            replicate_key = (
                api_key
                or litellm.replicate_key
                or litellm.api_key 
                or get_secret("REPLICATE_API_KEY")
                or get_secret("REPLICATE_API_TOKEN")
            )

            api_base = (
                api_base
                or litellm.api_base
                or get_secret("REPLICATE_API_BASE")
                or "https://api.replicate.com/v1"
            )

            custom_prompt_dict = (
                custom_prompt_dict
                or litellm.custom_prompt_dict
            )

            model_response = replicate.completion(
                model=model,
                messages=messages,
                api_base=api_base,
                model_response=model_response,
                print_verbose=print_verbose,
                optional_params=optional_params,
                litellm_params=litellm_params,
                logger_fn=logger_fn,
                encoding=encoding, # for calculating input/output tokens
                api_key=replicate_key,
                logging_obj=logging, 
                custom_prompt_dict=custom_prompt_dict
            )
            if "stream" in optional_params and optional_params["stream"] == True:
                # don't try to access stream object,
                response = CustomStreamWrapper(model_response, model, logging_obj=logging, custom_llm_provider="replicate")
                return response
            response = model_response

        elif custom_llm_provider=="anthropic":
            api_key = (
                api_key 
                or litellm.anthropic_key 
                or litellm.api_key
                or os.environ.get("ANTHROPIC_API_KEY") 
            )
            api_base = (
                api_base
                or litellm.api_base
                or get_secret("ANTHROPIC_API_BASE")
                or "https://api.anthropic.com/v1/complete"
            )
            custom_prompt_dict = (
                custom_prompt_dict
                or litellm.custom_prompt_dict
            )
            model_response = anthropic.completion(
                model=model,
                messages=messages,
                api_base=api_base,
                custom_prompt_dict=litellm.custom_prompt_dict,
                model_response=model_response,
                print_verbose=print_verbose,
                optional_params=optional_params,
                litellm_params=litellm_params,
                logger_fn=logger_fn,
                encoding=encoding, # for calculating input/output tokens
                api_key=api_key,
                logging_obj=logging, 
            )
            if "stream" in optional_params and optional_params["stream"] == True:
                # don't try to access stream object,
                response = CustomStreamWrapper(model_response, model, custom_llm_provider="anthropic", logging_obj=logging)
                return response
            response = model_response
        elif custom_llm_provider == "nlp_cloud":
            nlp_cloud_key = (
                api_key or litellm.nlp_cloud_key or get_secret("NLP_CLOUD_API_KEY") or litellm.api_key
            )

            api_base = (
                api_base
                or litellm.api_base
                or get_secret("NLP_CLOUD_API_BASE")
                or "https://api.nlpcloud.io/v1/gpu/"
            )

            model_response = nlp_cloud.completion(
                model=model,
                messages=messages,
                api_base=api_base,
                model_response=model_response,
                print_verbose=print_verbose,
                optional_params=optional_params,
                litellm_params=litellm_params,
                logger_fn=logger_fn,
                encoding=encoding,
                api_key=nlp_cloud_key,
                logging_obj=logging
            )

            if "stream" in optional_params and optional_params["stream"] == True:
                # don't try to access stream object,
                response = CustomStreamWrapper(model_response, model, custom_llm_provider="nlp_cloud", logging_obj=logging)
                return response
            response = model_response
        elif custom_llm_provider == "aleph_alpha":
            aleph_alpha_key = (
                api_key or litellm.aleph_alpha_key or get_secret("ALEPH_ALPHA_API_KEY") or get_secret("ALEPHALPHA_API_KEY") or litellm.api_key
            )

            api_base = (
                api_base
                or litellm.api_base
                or get_secret("ALEPH_ALPHA_API_BASE")
                or "https://api.aleph-alpha.com/complete"
            )

            model_response = aleph_alpha.completion(
                model=model,
                messages=messages,
                api_base=api_base,
                model_response=model_response,
                print_verbose=print_verbose,
                optional_params=optional_params,
                litellm_params=litellm_params,
                logger_fn=logger_fn,
                encoding=encoding,
                default_max_tokens_to_sample=litellm.max_tokens,
                api_key=aleph_alpha_key,
                logging_obj=logging # model call logging done inside the class as we make need to modify I/O to fit aleph alpha's requirements
            )

            if "stream" in optional_params and optional_params["stream"] == True:
                # don't try to access stream object,
                response = CustomStreamWrapper(model_response, model, custom_llm_provider="aleph_alpha", logging_obj=logging)
                return response
            response = model_response
        elif custom_llm_provider == "cohere":
            cohere_key = (
                api_key
                or litellm.cohere_key
                or get_secret("COHERE_API_KEY")
                or get_secret("CO_API_KEY")
                or litellm.api_key
            )

            api_base = (
                api_base
                or litellm.api_base
                or get_secret("COHERE_API_BASE")
                or "https://api.cohere.ai/v1/generate"
            )
            
            model_response = cohere.completion(
                model=model,
                messages=messages,
                api_base=api_base,
                model_response=model_response,
                print_verbose=print_verbose,
                optional_params=optional_params,
                litellm_params=litellm_params,
                logger_fn=logger_fn,
                encoding=encoding,
                api_key=cohere_key,
                logging_obj=logging # model call logging done inside the class as we make need to modify I/O to fit aleph alpha's requirements
            )

            if "stream" in optional_params and optional_params["stream"] == True:
                # don't try to access stream object,
                response = CustomStreamWrapper(model_response, model, custom_llm_provider="cohere", logging_obj=logging)
                return response
            response = model_response
        elif custom_llm_provider == "maritalk":
            maritalk_key = (
                api_key
                or litellm.maritalk_key
                or get_secret("MARITALK_API_KEY")
                or litellm.api_key
            )

            api_base = (
                api_base
                or litellm.api_base
                or get_secret("MARITALK_API_BASE")
                or "https://chat.maritaca.ai/api/chat/inference"
            )
            
            model_response = maritalk.completion(
                model=model,
                messages=messages,
                api_base=api_base,
                model_response=model_response,
                print_verbose=print_verbose,
                optional_params=optional_params,
                litellm_params=litellm_params,
                logger_fn=logger_fn,
                encoding=encoding,
                api_key=maritalk_key,
                logging_obj=logging 
            )

            if "stream" in optional_params and optional_params["stream"] == True:
                # don't try to access stream object,
                response = CustomStreamWrapper(model_response, model, custom_llm_provider="maritalk", logging_obj=logging)
                return response
            response = model_response
        elif ( 
            custom_llm_provider == "huggingface"
        ):
            custom_llm_provider = "huggingface"
            huggingface_key = (
                api_key
                or litellm.huggingface_key
                or os.environ.get("HF_TOKEN")
                or os.environ.get("HUGGINGFACE_API_KEY")
                or litellm.api_key
            )
            hf_headers = (
                headers
                or litellm.headers
            )

            custom_prompt_dict = (
                custom_prompt_dict
                or litellm.custom_prompt_dict
            )
            model_response = huggingface.completion(
                model=model,
                messages=messages,
                api_base=api_base, # type: ignore
                headers=hf_headers,
                model_response=model_response,
                print_verbose=print_verbose,
                optional_params=optional_params,
                litellm_params=litellm_params,
                logger_fn=logger_fn,
                encoding=encoding, 
                api_key=huggingface_key, 
                acompletion=acompletion,
                logging_obj=logging,
                custom_prompt_dict=custom_prompt_dict
            )
            if "stream" in optional_params and optional_params["stream"] == True and acompletion is False:
                # don't try to access stream object,
                response = CustomStreamWrapper(
                    model_response, model, custom_llm_provider="huggingface", logging_obj=logging
                )
                return response
            response = model_response
        elif custom_llm_provider == "oobabooga":
            custom_llm_provider = "oobabooga"
            model_response = oobabooga.completion(
                model=model,
                messages=messages,
                model_response=model_response,
                api_base=api_base, # type: ignore
                print_verbose=print_verbose,
                optional_params=optional_params,
                litellm_params=litellm_params,
                api_key=None,
                logger_fn=logger_fn,
                encoding=encoding,
                logging_obj=logging
            )
            if "stream" in optional_params and optional_params["stream"] == True:
                # don't try to access stream object,
                response = CustomStreamWrapper(
                    model_response, model, custom_llm_provider="oobabooga", logging_obj=logging
                )
                return response
            response = model_response
        elif custom_llm_provider == "openrouter":
            api_base = (
                api_base
                or litellm.api_base
                or  "https://openrouter.ai/api/v1"
            )

            api_key = (
                api_key or
                litellm.api_key or
                litellm.openrouter_key or
                get_secret("OPENROUTER_API_KEY") or 
                get_secret("OR_API_KEY")
            )

            openrouter_site_url = (
                get_secret("OR_SITE_URL")
                or "https://litellm.ai"
            )

            openrouter_app_name = (
                get_secret("OR_APP_NAME")
                or "liteLLM"
            )

            headers = (
                headers or
                litellm.headers or 
                {
                    "HTTP-Referer": openrouter_site_url,
                    "X-Title": openrouter_app_name,
                }
            )

            data = {
                "model": model, 
                "messages": messages,  
                **optional_params
            }
            ## LOGGING
            logging.pre_call(input=messages, api_key=openai.api_key, additional_args={"complete_input_dict": data, "headers": headers})
            ## COMPLETION CALL

            ## COMPLETION CALL
            response = openai_chat_completions.completion(
                model=model,
                messages=messages,
                headers=headers,
                api_key=api_key,
                api_base=api_base,
                model_response=model_response,
                print_verbose=print_verbose,
                optional_params=optional_params,
                litellm_params=litellm_params,
                logger_fn=logger_fn,
                logging_obj=logging, 
                acompletion=acompletion,
                timeout=timeout
            )
            ## LOGGING
            logging.post_call(
                input=messages, api_key=openai.api_key, original_response=response
            )
        elif custom_llm_provider == "together_ai" or ("togethercomputer" in model) or (model  in litellm.together_ai_models):
            custom_llm_provider = "together_ai"
            together_ai_key = (
                api_key
                or litellm.togetherai_api_key
                or get_secret("TOGETHER_AI_TOKEN")
                or get_secret("TOGETHERAI_API_KEY")
                or litellm.api_key
            )

            api_base = (
                api_base
                or litellm.api_base
                or get_secret("TOGETHERAI_API_BASE")
                or "https://api.together.xyz/inference"
            )

            custom_prompt_dict = (
                custom_prompt_dict
                or litellm.custom_prompt_dict
            )
            
            model_response = together_ai.completion(
                model=model,
                messages=messages,
                api_base=api_base,
                model_response=model_response,
                print_verbose=print_verbose,
                optional_params=optional_params,
                litellm_params=litellm_params,
                logger_fn=logger_fn,
                encoding=encoding,
                api_key=together_ai_key,
                logging_obj=logging,
                custom_prompt_dict=custom_prompt_dict
            )
            if "stream_tokens" in optional_params and optional_params["stream_tokens"] == True:
                # don't try to access stream object,
                response = CustomStreamWrapper(
                    model_response, model, custom_llm_provider="together_ai", logging_obj=logging
                )
                return response
            response = model_response
        elif custom_llm_provider == "palm":
            palm_api_key = (
                api_key
                or get_secret("PALM_API_KEY")
                or litellm.api_key
            )
            
            # palm does not support streaming as yet :(
            model_response = palm.completion(
                model=model,
                messages=messages,
                model_response=model_response,
                print_verbose=print_verbose,
                optional_params=optional_params,
                litellm_params=litellm_params,
                logger_fn=logger_fn,
                encoding=encoding,
                api_key=palm_api_key,
                logging_obj=logging
            )
            # fake palm streaming
            if "stream" in optional_params and optional_params["stream"] == True:
                # fake streaming for palm
                resp_string = model_response["choices"][0]["message"]["content"]
                response = CustomStreamWrapper(
                    resp_string, model, custom_llm_provider="palm", logging_obj=logging
                )
                return response
            response = model_response
        elif model in litellm.vertex_chat_models or model in litellm.vertex_code_chat_models or model in litellm.vertex_text_models or model in litellm.vertex_code_text_models:
            vertex_ai_project = (litellm.vertex_project 
                                 or get_secret("VERTEXAI_PROJECT"))
            vertex_ai_location = (litellm.vertex_location 
                                  or get_secret("VERTEXAI_LOCATION"))

            model_response = vertex_ai.completion(
                model=model,
                messages=messages,
                model_response=model_response,
                print_verbose=print_verbose,
                optional_params=optional_params,
                litellm_params=litellm_params,
                logger_fn=logger_fn,
                encoding=encoding,
                vertex_location=vertex_ai_location,
                vertex_project=vertex_ai_project,
                logging_obj=logging
            )
            
            if "stream" in optional_params and optional_params["stream"] == True:
                response = CustomStreamWrapper(
                    model_response, model, custom_llm_provider="vertex_ai", logging_obj=logging
                    )
                return response
            response = model_response
        elif custom_llm_provider == "ai21":
            custom_llm_provider = "ai21"
            ai21_key = (
                api_key
                or litellm.ai21_key
                or os.environ.get("AI21_API_KEY")
                or litellm.api_key
            )

            api_base = (
                api_base
                or litellm.api_base
                or get_secret("AI21_API_BASE")
                or "https://api.ai21.com/studio/v1/"
            )
        
            model_response = ai21.completion(
                model=model,
                messages=messages,
                api_base=api_base,
                model_response=model_response,
                print_verbose=print_verbose,
                optional_params=optional_params,
                litellm_params=litellm_params,
                logger_fn=logger_fn,
                encoding=encoding,
                api_key=ai21_key,
                logging_obj=logging
            )
            
            if "stream" in optional_params and optional_params["stream"] == True:
                # don't try to access stream object,
                response = CustomStreamWrapper(
                    model_response, model, custom_llm_provider="ai21", logging_obj=logging
                )
                return response
            
            ## RESPONSE OBJECT
            response = model_response
        elif custom_llm_provider == "sagemaker":
            # boto3 reads keys from .env
            model_response = sagemaker.completion(
                model=model,
                messages=messages,
                model_response=model_response,
                print_verbose=print_verbose,
                optional_params=optional_params,
                litellm_params=litellm_params,
                logger_fn=logger_fn,
                encoding=encoding,
                logging_obj=logging
            )
            if "stream" in optional_params and optional_params["stream"]==True: ## [BETA]
                # sagemaker does not support streaming as of now so we're faking streaming:
                # /static-proxy?url=https%3A%2F%2Fdiscuss.huggingface.co%2Ft%2Fstreaming-output-text-when-deploying-on-sagemaker%2F39611%3C%2Fspan%3E
                # "SageMaker is currently not supporting streaming responses."
                
                # fake streaming for sagemaker
                resp_string = model_response["choices"][0]["message"]["content"]
                response = CustomStreamWrapper(
                    resp_string, model, custom_llm_provider="sagemaker", logging_obj=logging
                )
                return response

            ## RESPONSE OBJECT
            response = model_response
        elif custom_llm_provider == "bedrock":
            # boto3 reads keys from .env
            custom_prompt_dict = (
                custom_prompt_dict
                or litellm.custom_prompt_dict
            )
            model_response = bedrock.completion(
                model=model,
                messages=messages,
                custom_prompt_dict=litellm.custom_prompt_dict,
                model_response=model_response,
                print_verbose=print_verbose,
                optional_params=optional_params,
                litellm_params=litellm_params,
                logger_fn=logger_fn,
                encoding=encoding,
                logging_obj=logging,
            )


            if "stream" in optional_params and optional_params["stream"] == True:
                # don't try to access stream object,
                if "ai21" in model: 
                    response = CustomStreamWrapper(
                        model_response, model, custom_llm_provider="bedrock", logging_obj=logging
                    )
                else:
                    response = CustomStreamWrapper(
                        iter(model_response), model, custom_llm_provider="bedrock", logging_obj=logging
                    )
                return response

            ## RESPONSE OBJECT
            response = model_response
        elif custom_llm_provider == "vllm":
            model_response = vllm.completion(
                model=model,
                messages=messages,
                model_response=model_response,
                print_verbose=print_verbose,
                optional_params=optional_params,
                litellm_params=litellm_params,
                logger_fn=logger_fn,
                encoding=encoding,
                logging_obj=logging
            )

            if "stream" in optional_params and optional_params["stream"] == True: ## [BETA]
                # don't try to access stream object,
                response = CustomStreamWrapper(
                    model_response, model, custom_llm_provider="vllm", logging_obj=logging
                )
                return response

            ## RESPONSE OBJECT
            response = model_response
        elif custom_llm_provider == "ollama":
            api_base = (
                litellm.api_base or
                api_base or
                get_secret("OLLAMA_API_BASE") or 
                "http://localhost:11434"
                
            )
            custom_prompt_dict = (
                custom_prompt_dict
                or litellm.custom_prompt_dict
            )
            if model in custom_prompt_dict:
                # check if the model has a registered custom prompt
                model_prompt_details = custom_prompt_dict[model]
                prompt = custom_prompt(
                    role_dict=model_prompt_details["roles"], 
                    initial_prompt_value=model_prompt_details["initial_prompt_value"],  
                    final_prompt_value=model_prompt_details["final_prompt_value"], 
                    messages=messages
                )
            else:
                prompt = prompt_factory(model=model, messages=messages, custom_llm_provider=custom_llm_provider)
            ## LOGGING
            if kwargs.get('acompletion', False) == True:    
                if optional_params.get("stream", False) == True:
                # assume all ollama responses are streamed
                    async_generator = ollama.async_get_ollama_response_stream(api_base, model, prompt, optional_params, logging_obj=logging)
                    return async_generator

            generator = ollama.get_ollama_response_stream(api_base, model, prompt, optional_params, logging_obj=logging)
            if optional_params.get("stream", False) == True:
                # assume all ollama responses are streamed
                response = CustomStreamWrapper(
                        generator, model, custom_llm_provider="ollama", logging_obj=logging
                )
                return response
            else:
                response_string = ""
                for chunk in generator:
                    response_string+=chunk['content']
            
            ## RESPONSE OBJECT
            model_response["choices"][0]["finish_reason"] = "stop"
            model_response["choices"][0]["message"]["content"] = response_string
            model_response["created"] = int(time.time())
            model_response["model"] = "ollama/" + model
            prompt_tokens = len(encoding.encode(prompt)) # type: ignore
            completion_tokens = len(encoding.encode(response_string))
            model_response["usage"] = Usage(prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens)
            response = model_response
        elif (
            custom_llm_provider == "baseten"
            or litellm.api_base == "https://app.baseten.co"
        ):
            custom_llm_provider = "baseten"
            baseten_key = (
                api_key or litellm.baseten_key or os.environ.get("BASETEN_API_KEY") or litellm.api_key
            )

            model_response = baseten.completion(
                model=model,
                messages=messages,
                model_response=model_response,
                print_verbose=print_verbose,
                optional_params=optional_params,
                litellm_params=litellm_params,
                logger_fn=logger_fn,
                encoding=encoding, 
                api_key=baseten_key, 
                logging_obj=logging
            )
            if inspect.isgenerator(model_response) or ("stream" in optional_params and optional_params["stream"] == True):
                # don't try to access stream object,
                response = CustomStreamWrapper(
                    model_response, model, custom_llm_provider="baseten", logging_obj=logging
                )
                return response
            response = model_response
        elif (
            custom_llm_provider == "petals"
            or model in litellm.petals_models
        ):
            api_base = (
                api_base or
                litellm.api_base 
            )

            custom_llm_provider = "petals"
            stream = optional_params.pop("stream", False)
            model_response = petals.completion(
                model=model,
                messages=messages,
                api_base=api_base,
                model_response=model_response,
                print_verbose=print_verbose,
                optional_params=optional_params,
                litellm_params=litellm_params,
                logger_fn=logger_fn,
                encoding=encoding, 
                logging_obj=logging
            )
            if stream==True: ## [BETA]
                # Fake streaming for petals
                resp_string = model_response["choices"][0]["message"]["content"]
                response = CustomStreamWrapper(
                    resp_string, model, custom_llm_provider="petals", logging_obj=logging
                )
                return response
            response = model_response
        elif (
            custom_llm_provider == "custom"
            ):
            import requests

            url = (
                litellm.api_base or
                api_base or
                ""
            )
            if url == None or url == "":
                raise ValueError("api_base not set. Set api_base or litellm.api_base for custom endpoints")

            """
            assume input to custom LLM api bases follow this format:
            resp = requests.post(
                api_base, 
                json={
                    'model': 'meta-llama/Llama-2-13b-hf', # model name
                    'params': {
                        'prompt': ["The capital of France is P"],
                        'max_tokens': 32,
                        'temperature': 0.7,
                        'top_p': 1.0,
                        'top_k': 40,
                    }
                }
            )

            """
            prompt = " ".join([message["content"] for message in messages]) # type: ignore
            resp = requests.post(url, json={
                'model': model,
                'params': {
                    'prompt': [prompt],
                    'max_tokens': max_tokens,
                    'temperature': temperature,
                    'top_p': top_p,
                    'top_k': kwargs.get('top_k', 40),
                }
            })
            response_json = resp.json()
            """
            assume all responses from custom api_bases of this format:
            {
                'data': [
                    {
                        'prompt': 'The capital of France is P',
                        'output': ['The capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France is PARIS.\nThe capital of France'],
                        'params': {'temperature': 0.7, 'top_k': 40, 'top_p': 1}}],
                        'message': 'ok'
                    }
                ]
            }
            """
            string_response = response_json['data'][0]['output'][0]
            ## RESPONSE OBJECT
            model_response["choices"][0]["message"]["content"] = string_response
            model_response["created"] = int(time.time())
            model_response["model"] = model
            response = model_response
        else:
            raise ValueError(
                f"Unable to map your input to a model. Check your input - {args}"
            )
        return response
    except Exception as e:
        ## Map to OpenAI Exception
        raise exception_type(
                model=model, custom_llm_provider=custom_llm_provider, original_exception=e, completion_kwargs=args,
            )


def completion_with_retries(*args, **kwargs):
    """
    Executes a litellm.completion() with 3 retries
    """
    try:
        import tenacity
    except Exception as e:
        raise Exception(f"tenacity import failed please run `pip install tenacity`. Error{e}")
    
    num_retries = kwargs.pop("num_retries", 3)
    retry_strategy = kwargs.pop("retry_strategy", "constant_retry")
    original_function = kwargs.pop("original_function", completion)
    if retry_strategy == "constant_retry": 
        retryer = tenacity.Retrying(stop=tenacity.stop_after_attempt(num_retries), reraise=True)
    elif retry_strategy == "exponential_backoff_retry": 
        retryer = tenacity.Retrying(wait=tenacity.wait_exponential(multiplier=1, max=10), stop=tenacity.stop_after_attempt(num_retries), reraise=True)
    return retryer(original_function, *args, **kwargs)

async def acompletion_with_retries(*args, **kwargs):
    """
    Executes a litellm.completion() with 3 retries
    """
    try:
        import tenacity
    except Exception as e:
        raise Exception(f"tenacity import failed please run `pip install tenacity`. Error{e}")
    
    num_retries = kwargs.pop("num_retries", 3)
    retry_strategy = kwargs.pop("retry_strategy", "constant_retry")
    original_function = kwargs.pop("original_function", completion)
    if retry_strategy == "constant_retry": 
        retryer = tenacity.Retrying(stop=tenacity.stop_after_attempt(num_retries), reraise=True)
    elif retry_strategy == "exponential_backoff_retry": 
        retryer = tenacity.Retrying(wait=tenacity.wait_exponential(multiplier=1, max=10), stop=tenacity.stop_after_attempt(num_retries), reraise=True)
    return await retryer(original_function, *args, **kwargs)



def batch_completion(
    model: str,
    # Optional OpenAI params: see https://platform.openai.com/docs/api-reference/chat/create
    messages: List = [],
    functions: List = [],
    function_call: str = "",  # optional params
    temperature: Optional[float] = None,
    top_p: Optional[float] = None,
    n: Optional[int] = None,
    stream: Optional[bool] = None,
    stop=None,
    max_tokens: Optional[float] = None,
    presence_penalty: Optional[float] = None,
    frequency_penalty: Optional[float]=None,
    logit_bias: Optional[dict] = None,
    user: Optional[str] = None,
    deployment_id = None,
    request_timeout: Optional[int] = None,
    # Optional liteLLM function params
    **kwargs):
    """
    Batch litellm.completion function for a given model.

    Args:
        model (str): The model to use for generating completions.
        messages (List, optional): List of messages to use as input for generating completions. Defaults to [].
        functions (List, optional): List of functions to use as input for generating completions. Defaults to [].
        function_call (str, optional): The function call to use as input for generating completions. Defaults to "".
        temperature (float, optional): The temperature parameter for generating completions. Defaults to None.
        top_p (float, optional): The top-p parameter for generating completions. Defaults to None.
        n (int, optional): The number of completions to generate. Defaults to None.
        stream (bool, optional): Whether to stream completions or not. Defaults to None.
        stop (optional): The stop parameter for generating completions. Defaults to None.
        max_tokens (float, optional): The maximum number of tokens to generate. Defaults to None.
        presence_penalty (float, optional): The presence penalty for generating completions. Defaults to None.
        frequency_penalty (float, optional): The frequency penalty for generating completions. Defaults to None.
        logit_bias (dict, optional): The logit bias for generating completions. Defaults to {}.
        user (str, optional): The user string for generating completions. Defaults to "".
        deployment_id (optional): The deployment ID for generating completions. Defaults to None.
        request_timeout (int, optional): The request timeout for generating completions. Defaults to None.

    Returns:
        list: A list of completion results.
    """
    args = locals()
    batch_messages = messages
    completions = []
    model = model
    custom_llm_provider = None
    if model.split("/", 1)[0] in litellm.provider_list:
        custom_llm_provider = model.split("/", 1)[0]
        model = model.split("/", 1)[1]
    if custom_llm_provider == "vllm":
        optional_params = get_optional_params(
            functions=functions,
            function_call=function_call,
            temperature=temperature,
            top_p=top_p,
            n=n,
            stream=stream,
            stop=stop,
            max_tokens=max_tokens,
            presence_penalty=presence_penalty,
            frequency_penalty=frequency_penalty,
            logit_bias=logit_bias,
            user=user,
            # params to identify the model
            model=model,
            custom_llm_provider=custom_llm_provider
        )
        results = vllm.batch_completions(model=model, messages=batch_messages, custom_prompt_dict=litellm.custom_prompt_dict, optional_params=optional_params)
    # all non VLLM models for batch completion models 
    else:
        def chunks(lst, n):
            """Yield successive n-sized chunks from lst."""
            for i in range(0, len(lst), n):
                yield lst[i:i + n]
        with ThreadPoolExecutor(max_workers=100) as executor:
            for sub_batch in chunks(batch_messages, 100):
                for message_list in sub_batch:
                    kwargs_modified = args.copy()
                    kwargs_modified["messages"] = message_list
                    original_kwargs = {}
                    if "kwargs" in kwargs_modified:
                        original_kwargs = kwargs_modified.pop("kwargs")
                    future = executor.submit(completion, **kwargs_modified, **original_kwargs)
                    completions.append(future)

        # Retrieve the results from the futures
        results = [future.result() for future in completions]
    return results

# send one request to multiple models
# return as soon as one of the llms responds
def batch_completion_models(*args, **kwargs):
    """
    Send a request to multiple language models concurrently and return the response
    as soon as one of the models responds.

    Args:
        *args: Variable-length positional arguments passed to the completion function.
        **kwargs: Additional keyword arguments:
            - models (str or list of str): The language models to send requests to.
            - Other keyword arguments to be passed to the completion function.

    Returns:
        str or None: The response from one of the language models, or None if no response is received.

    Note:
        This function utilizes a ThreadPoolExecutor to parallelize requests to multiple models.
        It sends requests concurrently and returns the response from the first model that responds.
    """
    import concurrent
    if "model" in kwargs:
        kwargs.pop("model")
    if "models" in kwargs:
        models = kwargs["models"]
        kwargs.pop("models")
        futures = {}
        with concurrent.futures.ThreadPoolExecutor(max_workers=len(models)) as executor:
            for model in models:
                futures[model] = executor.submit(completion, *args, model=model, **kwargs)

            for model, future in sorted(futures.items(), key=lambda x: models.index(x[0])):
                if future.result() is not None:
                    return future.result()
    elif "deployments" in kwargs: 
        deployments = kwargs["deployments"]
        kwargs.pop("deployments")
        kwargs.pop("model_list")
        nested_kwargs = kwargs.pop("kwargs", {})
        futures = {}
        with concurrent.futures.ThreadPoolExecutor(max_workers=len(deployments)) as executor:
            for deployment in deployments:
                for key in kwargs.keys(): 
                    if key not in deployment: # don't override deployment values e.g. model name, api base, etc. 
                        deployment[key] = kwargs[key]
                kwargs = {**deployment, **nested_kwargs}
                futures[deployment["model"]] = executor.submit(completion, **kwargs)

            while futures:
                # wait for the first returned future
                print_verbose("\n\n waiting for next result\n\n")
                done, _ = concurrent.futures.wait(futures.values(), return_when=concurrent.futures.FIRST_COMPLETED)
                print_verbose(f"done list\n{done}")
                for future in done:
                    try:
                        result = future.result()
                        return result
                    except Exception as e:
                        # if model 1 fails, continue with response from model 2, model3
                        print_verbose(f"\n\ngot an exception, ignoring, removing from futures")
                        print_verbose(futures)
                        new_futures = {}
                        for key, value in futures.items():
                            if future == value:
                                print_verbose(f"removing key{key}")
                                continue
                            else:
                                new_futures[key] = value
                        futures = new_futures
                        print_verbose(f"new futures{futures}")
                        continue

                
                print_verbose("\n\ndone looping through futures\n\n")
                print_verbose(futures)

    return None  # If no response is received from any model

def batch_completion_models_all_responses(*args, **kwargs):
    """
    Send a request to multiple language models concurrently and return a list of responses
    from all models that respond.

    Args:
        *args: Variable-length positional arguments passed to the completion function.
        **kwargs: Additional keyword arguments:
            - models (str or list of str): The language models to send requests to.
            - Other keyword arguments to be passed to the completion function.

    Returns:
        list: A list of responses from the language models that responded.

    Note:
        This function utilizes a ThreadPoolExecutor to parallelize requests to multiple models.
        It sends requests concurrently and collects responses from all models that respond.
    """
    import concurrent.futures

    # ANSI escape codes for colored output
    GREEN = "\033[92m"
    RED = "\033[91m"
    RESET = "\033[0m"

    if "model" in kwargs:
        kwargs.pop("model")
    if "models" in kwargs:
        models = kwargs["models"]
        kwargs.pop("models")

    responses = []

    with concurrent.futures.ThreadPoolExecutor(max_workers=len(models)) as executor:
        for idx, model in enumerate(models):
            future = executor.submit(completion, *args, model=model, **kwargs)
            if future.result() is not None:
                responses.append(future.result())

    return responses

### EMBEDDING ENDPOINTS ####################

async def aembedding(*args, **kwargs):
    """
    Asynchronously calls the `embedding` function with the given arguments and keyword arguments.

    Parameters:
    - `args` (tuple): Positional arguments to be passed to the `embedding` function.
    - `kwargs` (dict): Keyword arguments to be passed to the `embedding` function.

    Returns:
    - `response` (Any): The response returned by the `embedding` function.
    """
    loop = asyncio.get_event_loop()
    model = args[0] if len(args) > 0 else kwargs["model"]
    ### PASS ARGS TO Embedding ### 
    kwargs["aembedding"] = True
    custom_llm_provider = None
    try: 
        # Use a partial function to pass your keyword arguments
        func = partial(embedding, *args, **kwargs)

        # Add the context to the function
        ctx = contextvars.copy_context()
        func_with_context = partial(ctx.run, func)

        _, custom_llm_provider, _, _ = get_llm_provider(model=model, api_base=kwargs.get("api_base", None))

        if (custom_llm_provider == "openai" 
            or custom_llm_provider == "azure" 
            or custom_llm_provider == "custom_openai"
            or custom_llm_provider == "anyscale"
            or custom_llm_provider == "openrouter"
            or custom_llm_provider == "deepinfra"
            or custom_llm_provider == "perplexity"
            or custom_llm_provider == "huggingface"): # currently implemented aiohttp calls for just azure and openai, soon all. 
            # Await normally
            init_response = await loop.run_in_executor(None, func_with_context)
            if isinstance(init_response, dict) or isinstance(init_response, ModelResponse): ## CACHING SCENARIO 
                response = init_response
            elif asyncio.iscoroutine(init_response):
                response = await init_response
        else: 
            # Call the synchronous function using run_in_executor
            response =  await loop.run_in_executor(None, func_with_context)
        return response
    except Exception as e: 
        custom_llm_provider = custom_llm_provider or "openai"
        raise exception_type(
                model=model, custom_llm_provider=custom_llm_provider, original_exception=e, completion_kwargs=args,
            )

@client
def embedding(
    model, 
    input=[], 
    # Optional params
    timeout=600, # default to 10 minutes 
    # set api_base, api_version, api_key
    api_base: Optional[str] = None,
    api_version: Optional[str] = None,
    api_key: Optional[str] = None,
    api_type: Optional[str] = None,
    caching: bool=False,
    user: Optional[str]=None,
    custom_llm_provider=None,
    litellm_call_id=None, 
    litellm_logging_obj=None,
    logger_fn=None, 
    **kwargs
):
    """
    Embedding function that calls an API to generate embeddings for the given input.

    Parameters:
    - model: The embedding model to use.
    - input: The input for which embeddings are to be generated.
    - timeout: The timeout value for the API call, default 10 mins
    - litellm_call_id: The call ID for litellm logging.
    - litellm_logging_obj: The litellm logging object.
    - logger_fn: The logger function.
    - api_base: Optional. The base URL for the API.
    - api_version: Optional. The version of the API.
    - api_key: Optional. The API key to use.
    - api_type: Optional. The type of the API.
    - caching: A boolean indicating whether to enable caching.
    - custom_llm_provider: The custom llm provider.

    Returns:
    - response: The response received from the API call.

    Raises:
    - exception_type: If an exception occurs during the API call.
    """
    azure = kwargs.get("azure", None)
    client = kwargs.pop("client", None)
    rpm = kwargs.pop("rpm", None)
    tpm = kwargs.pop("tpm", None)
    aembedding = kwargs.pop("aembedding", None)

    optional_params = {}
    for param in kwargs:
        if param != "metadata":                     # filter out metadata from optional_params
            optional_params[param] = kwargs[param]
    model, custom_llm_provider, dynamic_api_key, api_base = get_llm_provider(model=model, custom_llm_provider=custom_llm_provider, api_base=api_base, api_key=api_key)
    try:
        response = None
        logging = litellm_logging_obj
        logging.update_environment_variables(model=model, user="", optional_params={}, litellm_params={"timeout": timeout, "azure": azure, "litellm_call_id": litellm_call_id, "logger_fn": logger_fn})
        if azure == True or custom_llm_provider == "azure":
            # azure configs
            api_type = get_secret("AZURE_API_TYPE") or "azure"

            api_base = (
                api_base
                or litellm.api_base
                or get_secret("AZURE_API_BASE")
            )

            api_version = (
                api_version or
                litellm.api_version or
                get_secret("AZURE_API_VERSION")
            )

            azure_ad_token = (
                kwargs.pop("azure_ad_token", None) or
                get_secret("AZURE_AD_TOKEN")
            )

            api_key = (
                api_key or
                litellm.api_key or
                litellm.azure_key or
                get_secret("AZURE_API_KEY")
            )
            ## EMBEDDING CALL
            response = azure_chat_completions.embedding(
                model=model,
                input=input,
                api_base=api_base,
                api_key=api_key,
                api_version=api_version,
                azure_ad_token=azure_ad_token,
                logging_obj=logging,
                timeout=timeout,
                model_response=EmbeddingResponse(), 
                optional_params=optional_params,
                client=client,
                aembedding=aembedding
            )
        elif model in litellm.open_ai_embedding_models or custom_llm_provider == "openai":
            api_base = (
                api_base
                or litellm.api_base
                or get_secret("OPENAI_API_BASE")
                or "https://api.openai.com/v1"
            )
            openai.organization = (
                litellm.organization
                or get_secret("OPENAI_ORGANIZATION")
                or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
            )
            # set API KEY
            api_key = (
                api_key or
                litellm.api_key or
                litellm.openai_key or
                get_secret("OPENAI_API_KEY")
            )
            api_type = "openai"
            api_version = None


            ## EMBEDDING CALL
            response = openai_chat_completions.embedding(
                model=model,
                input=input,
                api_base=api_base,
                api_key=api_key,
                logging_obj=logging,
                timeout=timeout,
                model_response=EmbeddingResponse(), 
                optional_params=optional_params,
                client=client,
                aembedding=aembedding,
            )
        elif model in litellm.cohere_embedding_models:
            cohere_key = (
                api_key
                or litellm.cohere_key
                or get_secret("COHERE_API_KEY")
                or get_secret("CO_API_KEY")
                or litellm.api_key
            )
            response = cohere.embedding(
                model=model,
                input=input,
                optional_params=optional_params,
                encoding=encoding,
                api_key=cohere_key,
                logging_obj=logging,
                model_response= EmbeddingResponse()

            )
        elif custom_llm_provider == "huggingface":
            api_key = (
                api_key
                or litellm.huggingface_key
                or get_secret("HUGGINGFACE_API_KEY")
                or litellm.api_key
            )
            response = huggingface.embedding(
                model=model,
                input=input,
                encoding=encoding,
                api_key=api_key,
                api_base=api_base,
                logging_obj=logging,
                model_response= EmbeddingResponse()
            )
        elif custom_llm_provider == "bedrock":
            response = bedrock.embedding(
                model=model,
                input=input,
                encoding=encoding,
                logging_obj=logging,
                optional_params=kwargs,
                model_response= EmbeddingResponse()
            )
        else:
            args = locals()
            raise ValueError(f"No valid embedding model args passed in - {args}")
        return response
    except Exception as e:
        ## LOGGING
        logging.post_call(
            input=input,
            api_key=openai.api_key,
            original_response=str(e),
        )
        ## Map to OpenAI Exception
        raise exception_type(
            model=model,
            original_exception=e,
            custom_llm_provider="azure" if azure == True else None,
        )


###### Text Completion ################
def text_completion(
    prompt: Union[str, List[Union[str, List[Union[str, List[int]]]]]], # Required: The prompt(s) to generate completions for.
    model: Optional[str]=None,                 # Optional: either `model` or `engine` can be set
    best_of: Optional[int] = None,   # Optional: Generates best_of completions server-side.
    echo: Optional[bool] = None,  # Optional: Echo back the prompt in addition to the completion.
    frequency_penalty: Optional[float] = None, # Optional: Penalize new tokens based on their existing frequency.
    logit_bias: Optional[Dict[int, int]] = None, # Optional: Modify the likelihood of specified tokens.
    logprobs: Optional[int] = None, # Optional: Include the log probabilities on the most likely tokens.
    max_tokens: Optional[int] = None, # Optional: The maximum number of tokens to generate in the completion.
    n: Optional[int] = None,         # Optional: How many completions to generate for each prompt.
    presence_penalty: Optional[float] = None, # Optional: Penalize new tokens based on whether they appear in the text so far.
    stop: Optional[Union[str, List[str]]] = None, # Optional: Sequences where the API will stop generating further tokens.
    stream: Optional[bool] = None, # Optional: Whether to stream back partial progress.
    suffix: Optional[str] = None,   # Optional: The suffix that comes after a completion of inserted text.
    temperature: Optional[float] = None, # Optional: Sampling temperature to use.
    top_p: Optional[float] = None,     # Optional: Nucleus sampling parameter.
    user: Optional[str] = None,     # Optional: A unique identifier representing your end-user.

    # set api_base, api_version, api_key
    api_base: Optional[str] = None,
    api_version: Optional[str] = None,
    api_key: Optional[str] = None,
    model_list: Optional[list] = None, # pass in a list of api_base,keys, etc. 

    # Optional liteLLM function params
    custom_llm_provider: Optional[str] = None,
    *args, 
    **kwargs
):
    global print_verbose
    import copy
    """
    Generate text completions using the OpenAI API.

    Args:
        model (str): ID of the model to use.
        prompt (Union[str, List[Union[str, List[Union[str, List[int]]]]]): The prompt(s) to generate completions for.
        best_of (Optional[int], optional): Generates best_of completions server-side. Defaults to 1.
        echo (Optional[bool], optional): Echo back the prompt in addition to the completion. Defaults to False.
        frequency_penalty (Optional[float], optional): Penalize new tokens based on their existing frequency. Defaults to 0.
        logit_bias (Optional[Dict[int, int]], optional): Modify the likelihood of specified tokens. Defaults to None.
        logprobs (Optional[int], optional): Include the log probabilities on the most likely tokens. Defaults to None.
        max_tokens (Optional[int], optional): The maximum number of tokens to generate in the completion. Defaults to 16.
        n (Optional[int], optional): How many completions to generate for each prompt. Defaults to 1.
        presence_penalty (Optional[float], optional): Penalize new tokens based on whether they appear in the text so far. Defaults to 0.
        stop (Optional[Union[str, List[str]]], optional): Sequences where the API will stop generating further tokens. Defaults to None.
        stream (Optional[bool], optional): Whether to stream back partial progress. Defaults to False.
        suffix (Optional[str], optional): The suffix that comes after a completion of inserted text. Defaults to None.
        temperature (Optional[float], optional): Sampling temperature to use. Defaults to 1.
        top_p (Optional[float], optional): Nucleus sampling parameter. Defaults to 1.
        user (Optional[str], optional): A unique identifier representing your end-user.
    Returns:
        TextCompletionResponse: A response object containing the generated completion and associated metadata.

    Example:
        Your example of how to use this function goes here.
    """
    if "engine" in  kwargs:
        if model==None:
            # only use engine when model not passed
            model = kwargs["engine"]
        kwargs.pop("engine")

    text_completion_response = TextCompletionResponse()

    optional_params: Dict[str, Any] = {}
    # default values for all optional params are none, litellm only passes them to the llm when they are set to non None values
    if best_of is not None:
        optional_params["best_of"] = best_of
    if echo is not None:
        optional_params["echo"] = echo
    if frequency_penalty is not None:
        optional_params["frequency_penalty"] = frequency_penalty
    if logit_bias is not None:
        optional_params["logit_bias"] = logit_bias
    if logprobs is not None:
        optional_params["logprobs"] = logprobs
    if max_tokens is not None:
        optional_params["max_tokens"] = max_tokens
    if n is not None:
        optional_params["n"] = n
    if presence_penalty is not None:
        optional_params["presence_penalty"] = presence_penalty
    if stop is not None:
        optional_params["stop"] = stop
    if stream is not None:
        optional_params["stream"] = stream
    if suffix is not None:
        optional_params["suffix"] = suffix
    if temperature is not None:
        optional_params["temperature"] = temperature
    if top_p is not None:
        optional_params["top_p"] = top_p
    if user is not None:
        optional_params["user"] = user
    if api_base is not None:
        optional_params["api_base"] = api_base
    if api_version is not None:
        optional_params["api_version"] = api_version
    if api_key is not None:
        optional_params["api_key"] = api_key
    if custom_llm_provider is not None:
        optional_params["custom_llm_provider"] = custom_llm_provider

    # get custom_llm_provider
    _, custom_llm_provider, dynamic_api_key, api_base = get_llm_provider(model=model, custom_llm_provider=custom_llm_provider, api_base=api_base) # type: ignore

    if custom_llm_provider == "huggingface":
        # if echo == True, for TGI llms we need to set top_n_tokens to 3
        if echo == True:
            # for tgi llms
            if "top_n_tokens" not in kwargs:
                kwargs["top_n_tokens"] = 3

        # processing prompt - users can pass raw tokens to OpenAI Completion()
        if type(prompt) == list:
            import concurrent.futures
            tokenizer = tiktoken.encoding_for_model("text-davinci-003")
            ## if it's a 2d list - each element in the list is a text_completion() request
            if len(prompt) > 0 and type(prompt[0]) == list:
                responses = [None for x in prompt] # init responses 
                def process_prompt(i, individual_prompt):
                    decoded_prompt = tokenizer.decode(individual_prompt)
                    all_params = {**kwargs, **optional_params}
                    response = text_completion(
                        model=model,
                        prompt=decoded_prompt,
                        num_retries=3,# ensure this does not fail for the batch
                        *args,
                        **all_params,
                    )
                    #print(response)
                    text_completion_response["id"] = response.get("id", None)
                    text_completion_response["object"] = "text_completion"
                    text_completion_response["created"] = response.get("created", None)
                    text_completion_response["model"] = response.get("model", None)
                    return response["choices"][0]
                with concurrent.futures.ThreadPoolExecutor() as executor:
                    futures = [executor.submit(process_prompt, i, individual_prompt) for i, individual_prompt in enumerate(prompt)]
                    for i, future in enumerate(concurrent.futures.as_completed(futures)):
                        responses[i] = future.result()
                    text_completion_response.choices = responses 

                return text_completion_response
    # else:
    # check if non default values passed in for best_of, echo, logprobs, suffix 
    # these are the params supported by Completion() but not ChatCompletion
    
    # default case, non OpenAI requests go through here
    messages = [{"role": "system", "content": prompt}]
    kwargs.pop("prompt", None)
    response = completion(
        model = model,
        messages=messages,
        *args,
        **kwargs,
        **optional_params,
    )
    if stream == True or kwargs.get("stream", False) == True:
        response = TextCompletionStreamWrapper(completion_stream=response, model=model)
        return response

    transformed_logprobs = None
    # only supported for TGI models
    try:
        raw_response = response._hidden_params.get("original_response", None)
        transformed_logprobs = litellm.utils.transform_logprobs(raw_response)
    except Exception as e:
        print_verbose(f"LiteLLM non blocking exception: {e}")
    text_completion_response["id"] = response.get("id", None)
    text_completion_response["object"] = "text_completion"
    text_completion_response["created"] = response.get("created", None)
    text_completion_response["model"] = response.get("model", None)
    text_choices = TextChoices()
    text_choices["text"] = response["choices"][0]["message"]["content"]
    text_choices["index"] = response["choices"][0]["index"]
    text_choices["logprobs"] = transformed_logprobs
    text_choices["finish_reason"] = response["choices"][0]["finish_reason"]
    text_completion_response["choices"] = [text_choices]
    text_completion_response["usage"] = response.get("usage", None)
    return text_completion_response

##### Moderation #######################
def moderation(input: str, api_key: Optional[str]=None):
    # only supports open ai for now
    api_key = (
                api_key or
                litellm.api_key or
                litellm.openai_key or
                get_secret("OPENAI_API_KEY")
            )
    openai.api_key = api_key
    openai.api_type = "open_ai" # type: ignore
    openai.api_version = None
    openai.base_url = "https://api.openai.com/v1/"
    response = openai.moderations.create(input=input)
    return response

####### HELPER FUNCTIONS ################
## Set verbose to true -> ```litellm.set_verbose = True```
def print_verbose(print_statement):
    if litellm.set_verbose:
        print(print_statement) # noqa

def config_completion(**kwargs):
    if litellm.config_path != None:
        config_args = read_config_args(litellm.config_path)
        # overwrite any args passed in with config args
        return completion(**kwargs, **config_args)
    else:
        raise ValueError(
            "No config path set, please set a config path using `litellm.config_path = 'path/to/config.json'`"
        )

def stream_chunk_builder(chunks: list, messages: Optional[list]=None):
    id = chunks[0]["id"]
    object = chunks[0]["object"]
    created = chunks[0]["created"]
    model = chunks[0]["model"]
    system_fingerprint = chunks[0].get("system_fingerprint", None)
    role = chunks[0]["choices"][0]["delta"]["role"]
    finish_reason = chunks[-1]["choices"][0]["finish_reason"]

    # Initialize the response dictionary
    response = {
        "id": id,
        "object": object,
        "created": created,
        "model": model,
        "system_fingerprint": system_fingerprint,
        "choices": [
            {
                "index": 0,
                "message": {
                    "role": role,
                    "content": ""
                },
                "finish_reason": finish_reason,
            }
        ],
        "usage": {
            "prompt_tokens": 0,  # Modify as needed
            "completion_tokens": 0,  # Modify as needed
            "total_tokens": 0  # Modify as needed
        }
    }

    # Extract the "content" strings from the nested dictionaries within "choices"
    content_list = []
    combined_content = ""
    combined_arguments = ""

    if "tool_calls" in chunks[0]["choices"][0]["delta"] and chunks[0]["choices"][0]["delta"]["tool_calls"] is not None:
        argument_list = []
        delta = chunks[0]["choices"][0]["delta"]
        message = response["choices"][0]["message"]
        message["tool_calls"] = []
        id = None
        name = None
        type = None
        tool_calls_list = []
        prev_index = 0
        prev_id = None
        curr_id = None
        curr_index = 0
        for chunk in chunks:
            choices = chunk["choices"]
            for choice in choices:
                delta = choice.get("delta", {})
                tool_calls = delta.get("tool_calls", "")
                # Check if a tool call is present
                if tool_calls and tool_calls[0].function is not None:
                    if tool_calls[0].id:
                        id = tool_calls[0].id
                        curr_id = id
                        if prev_id is None:
                            prev_id = curr_id
                    if tool_calls[0].index:
                        curr_index = tool_calls[0].index
                    if tool_calls[0].function.arguments:
                        # Now, tool_calls is expected to be a dictionary
                        arguments = tool_calls[0].function.arguments
                        argument_list.append(arguments)
                    if tool_calls[0].function.name: 
                        name = tool_calls[0].function.name
                    if tool_calls[0].type: 
                        type = tool_calls[0].type
            if curr_index != prev_index: # new tool call
                combined_arguments = "".join(argument_list)
                tool_calls_list.append({"id": prev_id, "index": prev_index, "function": {"arguments": combined_arguments, "name": name}, "type": type})
                argument_list = [] # reset 
                prev_index = curr_index
                prev_id = curr_id

        combined_arguments = "".join(argument_list)
        tool_calls_list.append({"id": id, "function": {"arguments": combined_arguments, "name": name}, "type": type})
        response["choices"][0]["message"]["content"] = None 
        response["choices"][0]["message"]["tool_calls"] = tool_calls_list
    elif "function_call" in chunks[0]["choices"][0]["delta"] and chunks[0]["choices"][0]["delta"]["function_call"] is not None:
        argument_list = []
        delta = chunks[0]["choices"][0]["delta"]
        function_call = delta.get("function_call", "")
        function_call_name = function_call.name

        message = response["choices"][0]["message"]
        message["function_call"] = {}
        message["function_call"]["name"] = function_call_name

        for chunk in chunks:
            choices = chunk["choices"]
            for choice in choices:
                delta = choice.get("delta", {})
                function_call = delta.get("function_call", "")
                
                # Check if a function call is present
                if function_call:
                    # Now, function_call is expected to be a dictionary
                    arguments = function_call.arguments
                    argument_list.append(arguments)

        combined_arguments = "".join(argument_list)
        response["choices"][0]["message"]["content"] = None
        response["choices"][0]["message"]["function_call"]["arguments"] = combined_arguments
    else:
        for chunk in chunks:
            choices = chunk["choices"]
            for choice in choices:
                delta = choice.get("delta", {})
                content = delta.get("content", "")
                if content == None:
                    continue # openai v1.0.0 sets content = None for chunks
                content_list.append(content)

        # Combine the "content" strings into a single string || combine the 'function' strings into a single string
        combined_content = "".join(content_list)

        # Update the "content" field within the response dictionary
        response["choices"][0]["message"]["content"] = combined_content
    
    if len(combined_content) > 0:
        completion_output = combined_content
    elif len(combined_arguments) > 0: 
        completion_output = combined_arguments
    # # Update usage information if needed
    try:
        response["usage"]["prompt_tokens"] = token_counter(model=model, messages=messages)
    except: # don't allow this failing to block a complete streaming response from being returned
        print_verbose(f"token_counter failed, assuming prompt tokens is 0")
        response["usage"]["prompt_tokens"] = 0
    response["usage"]["completion_tokens"] = token_counter(model=model, text=completion_output)
    response["usage"]["total_tokens"] = response["usage"]["prompt_tokens"] + response["usage"]["completion_tokens"]
    return convert_to_model_response_object(response_object=response, model_response_object=litellm.ModelResponse())