File size: 27,717 Bytes
395201c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
from typing import Optional, Union, Any
import types, time, json
import httpx
from .base import BaseLLM
from litellm.utils import ModelResponse, Choices, Message, CustomStreamWrapper, convert_to_model_response_object, Usage
from typing import Callable, Optional
import aiohttp, requests
import litellm
from .prompt_templates.factory import prompt_factory, custom_prompt
from openai import OpenAI, AsyncOpenAI

class OpenAIError(Exception):
    def __init__(self, status_code, message, request: Optional[httpx.Request]=None, response: Optional[httpx.Response]=None):
        self.status_code = status_code
        self.message = message
        if request:
            self.request = request
        else:
            self.request = httpx.Request(method="POST", url="https://api.openai.com/v1")
        if response:
            self.response = response
        else:
            self.response = httpx.Response(status_code=status_code, request=self.request)
        super().__init__(
            self.message
        )  # Call the base class constructor with the parameters it needs


class OpenAIConfig():
    """
    Reference: https://platform.openai.com/docs/api-reference/chat/create

    The class `OpenAIConfig` provides configuration for the OpenAI's Chat API interface. Below are the parameters:

    - `frequency_penalty` (number or null): Defaults to 0. Allows a value between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, thereby minimizing repetition.

    - `function_call` (string or object): This optional parameter controls how the model calls functions.

    - `functions` (array): An optional parameter. It is a list of functions for which the model may generate JSON inputs.

    - `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.

    - `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion.

    - `n` (integer or null): This optional parameter helps to set how many chat completion choices to generate for each input message.

    - `presence_penalty` (number or null): Defaults to 0. It penalizes new tokens based on if they appear in the text so far, hence increasing the model's likelihood to talk about new topics.

    - `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.

    - `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2.

    - `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling. 
    """
    frequency_penalty: Optional[int]=None
    function_call: Optional[Union[str, dict]]=None
    functions: Optional[list]=None
    logit_bias: Optional[dict]=None
    max_tokens: Optional[int]=None
    n: Optional[int]=None
    presence_penalty: Optional[int]=None
    stop: Optional[Union[str, list]]=None
    temperature: Optional[int]=None
    top_p: Optional[int]=None

    def __init__(self,
                 frequency_penalty: Optional[int]=None,
                 function_call: Optional[Union[str, dict]]=None,
                 functions: Optional[list]=None,
                 logit_bias: Optional[dict]=None,
                 max_tokens: Optional[int]=None,
                 n: Optional[int]=None,
                 presence_penalty: Optional[int]=None,
                 stop: Optional[Union[str, list]]=None,
                 temperature: Optional[int]=None,
                 top_p: Optional[int]=None,) -> None:
        
        locals_ = locals()
        for key, value in locals_.items():
            if key != 'self' and value is not None:
                setattr(self.__class__, key, value)
   
    @classmethod
    def get_config(cls):
        return {k: v for k, v in cls.__dict__.items() 
                if not k.startswith('__') 
                and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod)) 
                and v is not None}

class OpenAITextCompletionConfig():
    """
    Reference: https://platform.openai.com/docs/api-reference/completions/create

    The class `OpenAITextCompletionConfig` provides configuration for the OpenAI's text completion API interface. Below are the parameters:

    - `best_of` (integer or null): This optional parameter generates server-side completions and returns the one with the highest log probability per token.

    - `echo` (boolean or null): This optional parameter will echo back the prompt in addition to the completion.

    - `frequency_penalty` (number or null): Defaults to 0. It is a numbers from -2.0 to 2.0, where positive values decrease the model's likelihood to repeat the same line.

    - `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
    
    - `logprobs` (integer or null): This optional parameter includes the log probabilities on the most likely tokens as well as the chosen tokens.

    - `max_tokens` (integer or null): This optional parameter sets the maximum number of tokens to generate in the completion.

    - `n` (integer or null): This optional parameter sets how many completions to generate for each prompt.

    - `presence_penalty` (number or null): Defaults to 0 and can be between -2.0 and 2.0. Positive values increase the model's likelihood to talk about new topics.
    
    - `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
    
    - `suffix` (string or null): Defines the suffix that comes after a completion of inserted text.

    - `temperature` (number or null): This optional parameter defines the sampling temperature to use.
    
    - `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
    """
    best_of: Optional[int]=None
    echo: Optional[bool]=None
    frequency_penalty: Optional[int]=None
    logit_bias: Optional[dict]=None
    logprobs: Optional[int]=None
    max_tokens: Optional[int]=None
    n: Optional[int]=None
    presence_penalty: Optional[int]=None
    stop: Optional[Union[str, list]]=None
    suffix: Optional[str]=None
    temperature: Optional[float]=None
    top_p: Optional[float]=None

    def __init__(self,
                 best_of: Optional[int]=None,
                 echo: Optional[bool]=None,
                 frequency_penalty: Optional[int]=None,
                 logit_bias: Optional[dict]=None,
                 logprobs: Optional[int]=None,
                 max_tokens: Optional[int]=None,
                 n: Optional[int]=None,
                 presence_penalty: Optional[int]=None,
                 stop: Optional[Union[str, list]]=None,
                 suffix: Optional[str]=None,
                 temperature: Optional[float]=None,
                 top_p: Optional[float]=None) -> None:
        locals_ = locals()
        for key, value in locals_.items():
            if key != 'self' and value is not None:
                setattr(self.__class__, key, value)
   
    @classmethod
    def get_config(cls):
        return {k: v for k, v in cls.__dict__.items() 
                if not k.startswith('__') 
                and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod)) 
                and v is not None}

class OpenAIChatCompletion(BaseLLM):

    def __init__(self) -> None:
        super().__init__()

    def completion(self, 
                model_response: ModelResponse,
                timeout: float, 
                model: Optional[str]=None,
                messages: Optional[list]=None,
                print_verbose: Optional[Callable]=None,
                api_key: Optional[str]=None,
                api_base: Optional[str]=None,
                acompletion: bool = False,
                logging_obj=None,
                optional_params=None,
                litellm_params=None,
                logger_fn=None,
                headers: Optional[dict]=None,
                custom_prompt_dict: dict={},
                client=None
        ):
        super().completion()
        exception_mapping_worked = False
        try: 
            if headers: 
                optional_params["extra_headers"] = headers
            if model is None or messages is None:
                raise OpenAIError(status_code=422, message=f"Missing model or messages")
            
            if not isinstance(timeout, float):
                raise OpenAIError(status_code=422, message=f"Timeout needs to be a float")

            for _ in range(2): # if call fails due to alternating messages, retry with reformatted message
                data = {
                    "model": model,
                    "messages": messages, 
                    **optional_params
                }
                
                ## LOGGING
                logging_obj.pre_call(
                    input=messages,
                    api_key=api_key,
                    additional_args={"headers": headers, "api_base": api_base, "acompletion": acompletion, "complete_input_dict": data},
                )

                try: 
                    max_retries = data.pop("max_retries", 2)
                    if acompletion is True: 
                        if optional_params.get("stream", False):
                            return self.async_streaming(logging_obj=logging_obj, data=data, model=model, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
                        else:
                            return self.acompletion(data=data, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
                    elif optional_params.get("stream", False):
                        return self.streaming(logging_obj=logging_obj, data=data, model=model, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries)
                    else:
                        if not isinstance(max_retries, int): 
                            raise OpenAIError(status_code=422, message="max retries must be an int")
                        if client is None:
                            openai_client = OpenAI(api_key=api_key, base_url=api_base, http_client=litellm.client_session, timeout=timeout, max_retries=max_retries)
                        else:
                            openai_client = client
                        response = openai_client.chat.completions.create(**data) # type: ignore
                        logging_obj.post_call(
                                input=None,
                                api_key=api_key,
                                original_response=response,
                                additional_args={"complete_input_dict": data},
                            )
                        return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response)
                except Exception as e:
                    if "Conversation roles must alternate user/assistant" in str(e) or "user and assistant roles should be alternating" in str(e): 
                        # reformat messages to ensure user/assistant are alternating, if there's either 2 consecutive 'user' messages or 2 consecutive 'assistant' message, add a blank 'user' or 'assistant' message to ensure compatibility
                        new_messages = []
                        for i in range(len(messages)-1): 
                            new_messages.append(messages[i])
                            if messages[i]["role"] == messages[i+1]["role"]:
                                if messages[i]["role"] == "user":
                                    new_messages.append({"role": "assistant", "content": ""})
                                else:
                                    new_messages.append({"role": "user", "content": ""})
                        new_messages.append(messages[-1])
                        messages = new_messages
                    elif "Last message must have role `user`" in str(e):
                        new_messages = messages
                        new_messages.append({"role": "user", "content": ""})
                        messages = new_messages
                    else:
                        raise e
        except OpenAIError as e: 
            exception_mapping_worked = True
            raise e
        except Exception as e: 
            raise e
    
    async def acompletion(self, 
                          data: dict, 
                          model_response: ModelResponse, 
                          timeout: float,
                          api_key: Optional[str]=None,
                          api_base: Optional[str]=None,
                          client=None,
                          max_retries=None,
                        ): 
        response = None
        try: 
            if client is None:
                openai_aclient = AsyncOpenAI(api_key=api_key, base_url=api_base, http_client=litellm.aclient_session, timeout=timeout, max_retries=max_retries)
            else:
                openai_aclient = client
            response = await openai_aclient.chat.completions.create(**data)
            return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response)
        except Exception as e: 
            if response and hasattr(response, "text"):
                raise OpenAIError(status_code=500, message=f"{str(e)}\n\nOriginal Response: {response.text}")
            else: 
                if type(e).__name__ == "ReadTimeout": 
                    raise OpenAIError(status_code=408, message=f"{type(e).__name__}")
                else:
                    raise OpenAIError(status_code=500, message=f"{str(e)}")

    def streaming(self,
                  logging_obj,
                  timeout: float,
                  data: dict, 
                  model: str,
                  api_key: Optional[str]=None,
                  api_base: Optional[str]=None,
                  client = None,
                  max_retries=None
    ):
        if client is None:
            openai_client = OpenAI(api_key=api_key, base_url=api_base, http_client=litellm.client_session, timeout=timeout, max_retries=max_retries)
        else:
            openai_client = client
        response = openai_client.chat.completions.create(**data)
        streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
        return streamwrapper

    async def async_streaming(self, 
                          logging_obj,
                          timeout: float,
                          data: dict, 
                          model: str,
                          api_key: Optional[str]=None,
                          api_base: Optional[str]=None,
                          client=None,
                          max_retries=None,
                          ):
        response = None
        try: 
            if client is None:
                openai_aclient = AsyncOpenAI(api_key=api_key, base_url=api_base, http_client=litellm.aclient_session, timeout=timeout, max_retries=max_retries)
            else:
                openai_aclient = client
            response = await openai_aclient.chat.completions.create(**data)
            streamwrapper = CustomStreamWrapper(completion_stream=response, model=model, custom_llm_provider="openai",logging_obj=logging_obj)
            async for transformed_chunk in streamwrapper:
                yield transformed_chunk
        except Exception as e: # need to exception handle here. async exceptions don't get caught in sync functions. 
            if response is not None and hasattr(response, "text"):
                raise OpenAIError(status_code=500, message=f"{str(e)}\n\nOriginal Response: {response.text}")
            else:
                if type(e).__name__ == "ReadTimeout": 
                    raise OpenAIError(status_code=408, message=f"{type(e).__name__}")
                else:
                    raise OpenAIError(status_code=500, message=f"{str(e)}")
    async def aembedding(
            self, 
            data: dict, 
            model_response: ModelResponse, 
            timeout: float,
            api_key: Optional[str]=None,
            api_base: Optional[str]=None,
            client=None,
            max_retries=None,
        ): 
        response = None
        try: 
            if client is None:
                openai_aclient = AsyncOpenAI(api_key=api_key, base_url=api_base, http_client=litellm.aclient_session, timeout=timeout, max_retries=max_retries)
            else:
                openai_aclient = client
            response = await openai_aclient.embeddings.create(**data) # type: ignore
            return response
        except Exception as e:
            raise e
    def embedding(self,
                model: str,
                input: list,
                timeout: float, 
                api_key: Optional[str] = None,
                api_base: Optional[str] = None,
                model_response: Optional[litellm.utils.EmbeddingResponse] = None,
                logging_obj=None,
                optional_params=None,
                client=None,
                aembedding=None,
                ):
        super().embedding()
        exception_mapping_worked = False
        try: 
            model = model
            data = {
                "model": model,
                "input": input,
                **optional_params
            }
            max_retries = data.pop("max_retries", 2)
            if not isinstance(max_retries, int): 
                raise OpenAIError(status_code=422, message="max retries must be an int")
            if aembedding == True:
                response =  self.aembedding(data=data, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, max_retries=max_retries) # type: ignore
                return response
            if client is None:
                openai_client = OpenAI(api_key=api_key, base_url=api_base, http_client=litellm.client_session, timeout=timeout, max_retries=max_retries)
            else:
                openai_client = client
            ## LOGGING
            logging_obj.pre_call(
                    input=input,
                    api_key=api_key,
                    additional_args={"complete_input_dict": data, "api_base": api_base},
                )
            
            ## COMPLETION CALL
            response = openai_client.embeddings.create(**data) # type: ignore
            ## LOGGING
            logging_obj.post_call(
                    input=input,
                    api_key=api_key,
                    additional_args={"complete_input_dict": data},
                    original_response=response,
                )
            
            return convert_to_model_response_object(response_object=json.loads(response.model_dump_json()), model_response_object=model_response, response_type="embedding") # type: ignore
        except OpenAIError as e: 
            exception_mapping_worked = True
            raise e
        except Exception as e: 
            if exception_mapping_worked: 
                raise e
            else: 
                import traceback
                raise OpenAIError(status_code=500, message=traceback.format_exc())


class OpenAITextCompletion(BaseLLM):
    _client_session: httpx.Client

    def __init__(self) -> None:
        super().__init__()
        self._client_session = self.create_client_session()
    
    def validate_environment(self, api_key):
        headers = {
            "content-type": "application/json",
        }
        if api_key:
            headers["Authorization"] = f"Bearer {api_key}"
        return headers
    
    def convert_to_model_response_object(self, response_object: Optional[dict]=None, model_response_object: Optional[ModelResponse]=None):
        try: 
            ## RESPONSE OBJECT
            if response_object is None or model_response_object is None:
                raise ValueError("Error in response object format")
            choice_list=[]
            for idx, choice in enumerate(response_object["choices"]): 
                message = Message(content=choice["text"], role="assistant")
                choice = Choices(finish_reason=choice["finish_reason"], index=idx, message=message)
                choice_list.append(choice)
            model_response_object.choices = choice_list

            if "usage" in response_object: 
                model_response_object.usage = response_object["usage"]
            
            if "id" in response_object: 
                model_response_object.id = response_object["id"]
            
            if "model" in response_object: 
                model_response_object.model = response_object["model"]
            
            model_response_object._hidden_params["original_response"] = response_object # track original response, if users make a litellm.text_completion() request, we can return the original response
            return model_response_object
        except Exception as e: 
            raise e

    def completion(self, 
               model_response: ModelResponse,    
               api_key: str,
               model: str,
               messages: list,
               print_verbose: Optional[Callable]=None,
               api_base: Optional[str]=None,
               logging_obj=None,
               acompletion: bool = False,
               optional_params=None,
               litellm_params=None,
               logger_fn=None,
               headers: Optional[dict]=None):
        super().completion()
        exception_mapping_worked = False
        try: 
            if headers is None:
                headers = self.validate_environment(api_key=api_key)
            if model is None or messages is None:
                raise OpenAIError(status_code=422, message=f"Missing model or messages")
            
            api_base = f"{api_base}/completions"

            if len(messages)>0 and "content" in messages[0] and type(messages[0]["content"]) == list: 
                prompt = messages[0]["content"]
            else:
                prompt = " ".join([message["content"] for message in messages]) # type: ignore

            data = {
                "model": model,
                "prompt": prompt, 
                **optional_params
            }
            
            ## LOGGING
            logging_obj.pre_call(
                input=messages,
                api_key=api_key,
                additional_args={"headers": headers, "api_base": api_base, "complete_input_dict": data},
            )
            if acompletion == True: 
                if optional_params.get("stream", False):
                    return self.async_streaming(logging_obj=logging_obj, api_base=api_base, data=data, headers=headers, model_response=model_response, model=model)
                else:
                    return self.acompletion(api_base=api_base, data=data, headers=headers, model_response=model_response, prompt=prompt, api_key=api_key, logging_obj=logging_obj, model=model) # type: ignore
            elif optional_params.get("stream", False):
                return self.streaming(logging_obj=logging_obj, api_base=api_base, data=data, headers=headers, model_response=model_response, model=model)
            else:
                response = httpx.post(
                    url=f"{api_base}",
                    json=data,
                    headers=headers,
                )
                if response.status_code != 200:
                    raise OpenAIError(status_code=response.status_code, message=response.text)
                
                ## LOGGING
                logging_obj.post_call(
                    input=prompt,
                    api_key=api_key,
                    original_response=response,
                    additional_args={
                        "headers": headers,
                        "api_base": api_base,
                    },
                )

                ## RESPONSE OBJECT
                return self.convert_to_model_response_object(response_object=response.json(), model_response_object=model_response)
        except Exception as e: 
            raise e
    
    async def acompletion(self, 
                        logging_obj,
                        api_base: str, 
                        data: dict, 
                        headers: dict, 
                        model_response: ModelResponse, 
                        prompt: str, 
                        api_key: str, 
                        model: str): 
        async with httpx.AsyncClient() as client:
            response = await client.post(api_base, json=data, headers=headers, timeout=litellm.request_timeout) 
            response_json = response.json()
            if response.status_code != 200:
                raise OpenAIError(status_code=response.status_code, message=response.text)
                
            ## LOGGING
            logging_obj.post_call(
                input=prompt,
                api_key=api_key,
                original_response=response,
                additional_args={
                    "headers": headers,
                    "api_base": api_base,
                },
            )

            ## RESPONSE OBJECT
            return self.convert_to_model_response_object(response_object=response_json, model_response_object=model_response)

    def streaming(self,
                  logging_obj,
                  api_base: str, 
                  data: dict, 
                  headers: dict, 
                  model_response: ModelResponse, 
                  model: str
    ):
        with httpx.stream(
                    url=f"{api_base}",
                    json=data,
                    headers=headers,
                    method="POST",
                    timeout=litellm.request_timeout
                ) as response: 
                    if response.status_code != 200:
                        raise OpenAIError(status_code=response.status_code, message=response.text) 
                    
                    streamwrapper = CustomStreamWrapper(completion_stream=response.iter_lines(), model=model, custom_llm_provider="text-completion-openai",logging_obj=logging_obj)
                    for transformed_chunk in streamwrapper:
                        yield transformed_chunk

    async def async_streaming(self, 
                          logging_obj,
                          api_base: str, 
                          data: dict, 
                          headers: dict, 
                          model_response: ModelResponse, 
                          model: str):
        client = httpx.AsyncClient()
        async with client.stream(
                    url=f"{api_base}",
                    json=data,
                    headers=headers,
                    method="POST",
                    timeout=litellm.request_timeout
                ) as response: 
            if response.status_code != 200:
                raise OpenAIError(status_code=response.status_code, message=response.text)
            
            streamwrapper = CustomStreamWrapper(completion_stream=response.aiter_lines(), model=model, custom_llm_provider="text-completion-openai",logging_obj=logging_obj)
            async for transformed_chunk in streamwrapper:
                yield transformed_chunk