File size: 6,522 Bytes
395201c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os, types
import json
from enum import Enum
import requests
import time
from typing import Callable, Optional
from litellm.utils import ModelResponse, Usage
import litellm 
from .prompt_templates.factory import prompt_factory, custom_prompt
import httpx

class AnthropicConstants(Enum):
    HUMAN_PROMPT = "\n\nHuman: "
    AI_PROMPT = "\n\nAssistant: "

class AnthropicError(Exception):
    def __init__(self, status_code, message):
        self.status_code = status_code
        self.message = message
        self.request = httpx.Request(method="POST", url="https://api.anthropic.com/v1/complete")
        self.response = httpx.Response(status_code=status_code, request=self.request)
        super().__init__(
            self.message
        )  # Call the base class constructor with the parameters it needs

class AnthropicConfig():
    """
    Reference: https://docs.anthropic.com/claude/reference/complete_post

    to pass metadata to anthropic, it's {"user_id": "any-relevant-information"}
    """
    max_tokens_to_sample: Optional[int]=litellm.max_tokens # anthropic requires a default 
    stop_sequences: Optional[list]=None
    temperature: Optional[int]=None
    top_p: Optional[int]=None
    top_k: Optional[int]=None
    metadata: Optional[dict]=None

    def __init__(self, 
                 max_tokens_to_sample: Optional[int]=256, # anthropic requires a default 
                 stop_sequences: Optional[list]=None,
                 temperature: Optional[int]=None,
                 top_p: Optional[int]=None,
                 top_k: Optional[int]=None,
                 metadata: Optional[dict]=None) -> None:
        
        locals_ = locals()
        for key, value in locals_.items():
            if key != 'self' and value is not None:
                setattr(self.__class__, key, value)
    
    @classmethod
    def get_config(cls):
        return {k: v for k, v in cls.__dict__.items() 
                if not k.startswith('__') 
                and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod)) 
                and v is not None}


# makes headers for API call
def validate_environment(api_key):
    if api_key is None:
        raise ValueError(
            "Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params"
        )
    headers = {
        "accept": "application/json",
        "anthropic-version": "2023-06-01",
        "content-type": "application/json",
        "x-api-key": api_key,
    }
    return headers

def completion(
    model: str,
    messages: list,
    api_base: str,
    custom_prompt_dict: dict,
    model_response: ModelResponse,
    print_verbose: Callable,
    encoding,
    api_key,
    logging_obj,
    optional_params=None,
    litellm_params=None,
    logger_fn=None,
):
    headers = validate_environment(api_key)
    if model in custom_prompt_dict:
            # check if the model has a registered custom prompt
            model_prompt_details = custom_prompt_dict[model]
            prompt = custom_prompt(
                role_dict=model_prompt_details["roles"], 
                initial_prompt_value=model_prompt_details["initial_prompt_value"],  
                final_prompt_value=model_prompt_details["final_prompt_value"], 
                messages=messages
            )
    else:
        prompt = prompt_factory(model=model, messages=messages, custom_llm_provider="anthropic")
        
    ## Load Config
    config = litellm.AnthropicConfig.get_config() 
    for k, v in config.items(): 
        if k not in optional_params: # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
            optional_params[k] = v

    data = {
        "model": model,
        "prompt": prompt,
        **optional_params,
    }

    ## LOGGING
    logging_obj.pre_call(
        input=prompt,
        api_key=api_key,
        additional_args={"complete_input_dict": data, "api_base": api_base},
    )
    
    ## COMPLETION CALL
    if "stream" in optional_params and optional_params["stream"] == True:
        response = requests.post(
            api_base,
            headers=headers,
            data=json.dumps(data),
            stream=optional_params["stream"],
        )
        
        if response.status_code != 200:
            raise AnthropicError(status_code=response.status_code, message=response.text)

        return response.iter_lines()
    else:
        response = requests.post(
            api_base, headers=headers, data=json.dumps(data)
        )
        if response.status_code != 200:
            raise AnthropicError(status_code=response.status_code, message=response.text)
        
        ## LOGGING
        logging_obj.post_call(
            input=prompt,
            api_key=api_key,
            original_response=response.text,
            additional_args={"complete_input_dict": data},
        )
        print_verbose(f"raw model_response: {response.text}")
        ## RESPONSE OBJECT
        try:
            completion_response = response.json()
        except:
            raise AnthropicError(
                message=response.text, status_code=response.status_code
            )
        if "error" in completion_response:
            raise AnthropicError(
                message=str(completion_response["error"]),
                status_code=response.status_code,
            )
        else:
            if len(completion_response["completion"]) > 0:
                model_response["choices"][0]["message"]["content"] = completion_response[
                    "completion"
                ]
            model_response.choices[0].finish_reason = completion_response["stop_reason"]

        ## CALCULATING USAGE
        prompt_tokens = len(
            encoding.encode(prompt)
        )  ##[TODO] use the anthropic tokenizer here
        completion_tokens = len(
            encoding.encode(model_response["choices"][0]["message"].get("content", ""))
        )  ##[TODO] use the anthropic tokenizer here

        model_response["created"] = int(time.time())
        model_response["model"] = model
        usage = Usage(
            prompt_tokens=prompt_tokens,
            completion_tokens=completion_tokens,
            total_tokens=prompt_tokens + completion_tokens
        )
        model_response.usage = usage
        return model_response

def embedding():
    # logic for parsing in - calling - parsing out model embedding calls
    pass