File size: 8,376 Bytes
395201c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# import os, traceback
# from fastapi import FastAPI, Request, HTTPException
# from fastapi.routing import APIRouter
# from fastapi.responses import StreamingResponse, FileResponse
# from fastapi.middleware.cors import CORSMiddleware
# import json, sys
# from typing import Optional
# sys.path.insert(
#     0, os.path.abspath("../")
# )  # Adds the parent directory to the system path - for litellm local dev
# import litellm

# try:
#     from litellm.deprecated_litellm_server.server_utils import set_callbacks, load_router_config, print_verbose
# except ImportError:
#     from litellm.deprecated_litellm_server.server_utils import set_callbacks, load_router_config, print_verbose
# import dotenv
# dotenv.load_dotenv() # load env variables

# app = FastAPI(docs_url="/", title="LiteLLM API")
# router = APIRouter()
# origins = ["*"]

# app.add_middleware(
#     CORSMiddleware,
#     allow_origins=origins,
#     allow_credentials=True,
#     allow_methods=["*"],
#     allow_headers=["*"],
# )
# #### GLOBAL VARIABLES ####
# llm_router: Optional[litellm.Router] = None
# llm_model_list: Optional[list] = None
# server_settings: Optional[dict] = None

# set_callbacks() # sets litellm callbacks for logging if they exist in the environment 

# if "CONFIG_FILE_PATH" in os.environ:
#     llm_router, llm_model_list, server_settings = load_router_config(router=llm_router, config_file_path=os.getenv("CONFIG_FILE_PATH"))
# else:
#     llm_router, llm_model_list, server_settings = load_router_config(router=llm_router)
# #### API ENDPOINTS ####
# @router.get("/v1/models")
# @router.get("/models")  # if project requires model list
# def model_list():
#     all_models = litellm.utils.get_valid_models()
#     if llm_model_list: 
#         all_models += llm_model_list
#     return dict(
#         data=[
#             {
#                 "id": model,
#                 "object": "model",
#                 "created": 1677610602,
#                 "owned_by": "openai",
#             }
#             for model in all_models
#         ],
#         object="list",
#     )
# # for streaming
# def data_generator(response):

#     for chunk in response:

#         yield f"data: {json.dumps(chunk)}\n\n"

# @router.post("/v1/completions")
# @router.post("/completions")
# async def completion(request: Request):
#     data = await request.json()
#     response = litellm.completion(
#         **data
#     )
#     if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
#             return StreamingResponse(data_generator(response), media_type='text/event-stream')
#     return response

# @router.post("/v1/embeddings")
# @router.post("/embeddings")
# async def embedding(request: Request):
#     try: 
#         data = await request.json() 
#         # default to always using the "ENV" variables, only if AUTH_STRATEGY==DYNAMIC then reads headers
#         if os.getenv("AUTH_STRATEGY", None) == "DYNAMIC" and "authorization" in request.headers: # if users pass LLM api keys as part of header
#             api_key = request.headers.get("authorization")
#             api_key = api_key.replace("Bearer", "").strip() # type: ignore
#             if len(api_key.strip()) > 0:
#                 api_key = api_key
#                 data["api_key"] = api_key
#         response = litellm.embedding(
#             **data
#         )
#         return response
#     except Exception as e:
#         error_traceback = traceback.format_exc()
#         error_msg = f"{str(e)}\n\n{error_traceback}"
#         return {"error": error_msg}

# @router.post("/v1/chat/completions")
# @router.post("/chat/completions")
# @router.post("/openai/deployments/{model:path}/chat/completions") # azure compatible endpoint
# async def chat_completion(request: Request, model: Optional[str] = None):
#     global llm_model_list, server_settings
#     try:
#         data = await request.json()
#         server_model = server_settings.get("completion_model", None) if server_settings else None
#         data["model"] = server_model or model or data["model"]
#         ## CHECK KEYS ## 
#         # default to always using the "ENV" variables, only if AUTH_STRATEGY==DYNAMIC then reads headers
#         # env_validation = litellm.validate_environment(model=data["model"])
#         # if (env_validation['keys_in_environment'] is False or os.getenv("AUTH_STRATEGY", None) == "DYNAMIC") and ("authorization" in request.headers or "api-key" in request.headers): # if users pass LLM api keys as part of header
#         #     if "authorization" in request.headers:
#         #         api_key = request.headers.get("authorization")
#         #     elif "api-key" in request.headers: 
#         #         api_key = request.headers.get("api-key")
#         #     print(f"api_key in headers: {api_key}")
#         #     if " " in api_key:
#         #         api_key = api_key.split(" ")[1]
#         #     print(f"api_key split: {api_key}")
#         #     if len(api_key) > 0:
#         #         api_key = api_key
#         #         data["api_key"] = api_key
#         #         print(f"api_key in data: {api_key}")
#         ## CHECK CONFIG ## 
#         if llm_model_list and data["model"] in [m["model_name"] for m in llm_model_list]:
#             for m in llm_model_list: 
#                 if data["model"] == m["model_name"]: 
#                     for key, value in m["litellm_params"].items(): 
#                         data[key] = value
#                     break
#         response = litellm.completion(
#             **data
#         )
#         if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
#                 return StreamingResponse(data_generator(response), media_type='text/event-stream')
#         return response
#     except Exception as e:
#         error_traceback = traceback.format_exc()

#         error_msg = f"{str(e)}\n\n{error_traceback}"
#         # return {"error": error_msg}
#         raise HTTPException(status_code=500, detail=error_msg)

# @router.post("/router/completions")
# async def router_completion(request: Request):
#     global llm_router
#     try: 
#         data = await request.json()
#         if "model_list" in data: 
#             llm_router = litellm.Router(model_list=data.pop("model_list"))
#         if llm_router is None: 
#             raise Exception("Save model list via config.yaml. Eg.: ` docker build -t myapp --build-arg CONFIG_FILE=myconfig.yaml .` or pass it in as model_list=[..] as part of the request body")
        
#         # openai.ChatCompletion.create replacement
#         response = await llm_router.acompletion(model="gpt-3.5-turbo", 
#                         messages=[{"role": "user", "content": "Hey, how's it going?"}])

#         if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
#                 return StreamingResponse(data_generator(response), media_type='text/event-stream')
#         return response
#     except Exception as e: 
#         error_traceback = traceback.format_exc()
#         error_msg = f"{str(e)}\n\n{error_traceback}"
#         return {"error": error_msg}

# @router.post("/router/embedding")
# async def router_embedding(request: Request):
#     global llm_router
#     try: 
#         data = await request.json()
#         if "model_list" in data: 
#             llm_router = litellm.Router(model_list=data.pop("model_list"))
#         if llm_router is None: 
#             raise Exception("Save model list via config.yaml. Eg.: ` docker build -t myapp --build-arg CONFIG_FILE=myconfig.yaml .` or pass it in as model_list=[..] as part of the request body")

#         response = await llm_router.aembedding(model="gpt-3.5-turbo",  # type: ignore
#                         messages=[{"role": "user", "content": "Hey, how's it going?"}])

#         if 'stream' in data and data['stream'] == True: # use generate_responses to stream responses
#                 return StreamingResponse(data_generator(response), media_type='text/event-stream')
#         return response
#     except Exception as e: 
#         error_traceback = traceback.format_exc()
#         error_msg = f"{str(e)}\n\n{error_traceback}"
#         return {"error": error_msg}

# @router.get("/")
# async def home(request: Request):
#     return "LiteLLM: RUNNING"


# app.include_router(router)