nimool commited on
Commit
cd20c30
·
1 Parent(s): 9e78fda

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +86 -0
app.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import RobertaForQuestionAnswering
3
+ from transformers import BertForQuestionAnswering
4
+ from transformers import AutoTokenizer
5
+ from transformers import pipeline
6
+ import soundfile as sf
7
+ import torch
8
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
9
+ import sox
10
+ import subprocess
11
+
12
+
13
+ def read_file_and_process(wav_file):
14
+ filename = wav_file.split('.')[0]
15
+ filename_16k = filename + "16k.wav"
16
+ resampler(wav_file, filename_16k)
17
+ speech, _ = sf.read(filename_16k)
18
+ inputs = processor(speech, sampling_rate=16_000, return_tensors="pt", padding=True)
19
+
20
+ return inputs
21
+
22
+
23
+ def resampler(input_file_path, output_file_path):
24
+ command = (
25
+ f"ffmpeg -hide_banner -loglevel panic -i {input_file_path} -ar 16000 -ac 1 -bits_per_raw_sample 16 -vn "
26
+ f"{output_file_path}"
27
+ )
28
+ subprocess.call(command, shell=True)
29
+
30
+
31
+ def parse_transcription(logits):
32
+ predicted_ids = torch.argmax(logits, dim=-1)
33
+ transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
34
+ return transcription
35
+
36
+
37
+ def parse(wav_file):
38
+ input_values = read_file_and_process(wav_file)
39
+ with torch.no_grad():
40
+ logits = model(**input_values).logits
41
+ user_question = parse_transcription(logits)
42
+ return user_question
43
+
44
+
45
+ model_id = "jonatasgrosman/wav2vec2-large-xlsr-53-persian"
46
+ processor = Wav2Vec2Processor.from_pretrained(model_id)
47
+ model = Wav2Vec2ForCTC.from_pretrained(model_id)
48
+
49
+ model1 = RobertaForQuestionAnswering.from_pretrained("pedramyazdipoor/persian_xlm_roberta_large")
50
+ tokenizer1 = AutoTokenizer.from_pretrained("pedramyazdipoor/persian_xlm_roberta_large")
51
+
52
+
53
+ roberta_large = pipeline(task='question-answering', model=model1, tokenizer=tokenizer1)
54
+
55
+ def Q_A(text=None, audio=None, context=None):
56
+ if text is None:
57
+ question = parse(audio)
58
+ elif audio is None:
59
+ question = text
60
+ answer_pedram = roberta_large({"question":question, "context":context})['answer']
61
+ return answer_pedram
62
+
63
+
64
+
65
+ # Create title, description and article strings
66
+ title = "Question and answer based on Roberta model develop by nima asl toghiri"
67
+ description = "سیستم پردازش زبانی پرسش و پاسخ"
68
+ article = "آموزش داده شده با مدل زبانی روبرتا"
69
+
70
+
71
+ demo = gr.Interface(fn=Q_A, # mapping function from input to output
72
+ inputs=[gr.Textbox(label='پرسش خود را وارد کنید:', show_label=True, text_align='right', lines=2),
73
+ gr.Audio(source="microphone", type="filepath",
74
+ label="لطفا دکمه ضبط صدا را بزنید و شروع به صحبت کنید و بعذ از اتمام صحبت دوباره دکمه ضبط را فشار دهید.",
75
+ show_download_button=True,
76
+ show_edit_button=True,),
77
+ gr.Textbox(label='متن منبع خود را وارد کنید', show_label=True, text_align='right', lines=8)], # what are the inputs?
78
+ outputs=gr.Text(show_copy_button=True), # what are the outputs?
79
+ # our fn has two outputs, therefore we have two outputs
80
+ # Create examples list from "examples/" directory
81
+ title=title,
82
+ description=description,
83
+ article=article)
84
+
85
+ # Launch the demo!
86
+ demo.launch(share=True)