import os import gradio as gr import re import torch import cv2 import numpy as np from PIL import Image from transformers import DonutProcessor, VisionEncoderDecoderModel title = "OCR using Donut" description = """ This demo application uses `naver-clova-ix/donut-base` model to extract text from images. """ article = "Check out [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) documentation that this demo is based off of." checkpoint = "naver-clova-ix/donut-base" processor = DonutProcessor.from_pretrained(checkpoint) model = VisionEncoderDecoderModel.from_pretrained(checkpoint) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) # prepare decoder inputs task_prompt = "" decoder_input_ids = processor.tokenizer( task_prompt, add_special_tokens=False, return_tensors="pt" ).input_ids def convert_image_GRAY2BGR(image): if len(np.asarray(image).shape) != 3: image = cv2.cvtColor(np.array(image), cv2.COLOR_GRAY2BGR) image = Image.fromarray(np.uint8(image)) return image def predict(image): image = convert_image_GRAY2BGR(image) pixel_values = processor(image, return_tensors="pt").pixel_values outputs = model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_position_embeddings, early_stopping=True, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) sequence = processor.batch_decode(outputs.sequences)[0] sequence = sequence.replace(processor.tokenizer.eos_token, "").replace( processor.tokenizer.pad_token, "" ) sequence = re.sub( r"<.*?>", "", sequence, count=1 ).strip() # remove first task start token return processor.token2json(sequence)["text_sequence"] # We instantiate the Textbox class input_textbox = gr.Textbox( label="Type your prompt here:", placeholder="John Doe", lines=2 ) gr.Interface( fn=predict, inputs="image", outputs="text", title=title, description=description, article=article, examples=[ os.path.join(os.path.dirname(__file__), "./images/newyorkercartoons.png"), os.path.join(os.path.dirname(__file__), "./images/lorem_ipsum.png"), ], ).launch()