Spaces:
Running
on
Zero
Running
on
Zero
Nihal Nayak
commited on
Commit
·
4d92f8a
1
Parent(s):
56f924f
instruction response pair
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
6 |
"""
|
7 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
8 |
"""
|
9 |
-
# client = InferenceClient("BatsResearch/bonito-v1")
|
10 |
model = AutoModelForCausalLM.from_pretrained("BatsResearch/bonito-v1")
|
11 |
tokenizer = AutoTokenizer.from_pretrained("BatsResearch/bonito-v1")
|
12 |
model.to("cuda")
|
@@ -31,49 +30,22 @@ def respond(
|
|
31 |
top_p=top_p,
|
32 |
do_sample=True,
|
33 |
)
|
|
|
34 |
|
35 |
-
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
36 |
|
37 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
return response
|
40 |
-
# messages = []
|
41 |
-
# messages.append({"role": "user", "content": message})
|
42 |
|
43 |
-
# response = ""
|
44 |
-
|
45 |
-
|
46 |
-
# for message in client.text_generation(
|
47 |
-
# messages,
|
48 |
-
# max_tokens=max_tokens,
|
49 |
-
# stream=True,
|
50 |
-
# temperature=temperature,
|
51 |
-
# top_p=top_p,
|
52 |
-
# ):
|
53 |
-
# token = message.choices[0].delta.content
|
54 |
-
|
55 |
-
# response += token
|
56 |
-
# yield response
|
57 |
-
|
58 |
-
|
59 |
-
"""
|
60 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
61 |
-
"""
|
62 |
-
# demo = gr.ChatInterface(
|
63 |
-
# respond,
|
64 |
-
# additional_inputs=[
|
65 |
-
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
66 |
-
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
67 |
-
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
68 |
-
# gr.Slider(
|
69 |
-
# minimum=0.1,
|
70 |
-
# maximum=1.0,
|
71 |
-
# value=0.95,
|
72 |
-
# step=0.05,
|
73 |
-
# label="Top-p (nucleus sampling)",
|
74 |
-
# ),
|
75 |
-
# ],
|
76 |
-
# )
|
77 |
task_types = [
|
78 |
"extractive question answering",
|
79 |
"multiple-choice question answering",
|
@@ -101,7 +73,7 @@ demo = gr.Interface(
|
|
101 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
102 |
gr.Dropdown(task_types, label="Task type"),
|
103 |
],
|
104 |
-
outputs=gr.Textbox(label="
|
105 |
additional_inputs=[
|
106 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
107 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
|
|
6 |
"""
|
7 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
8 |
"""
|
|
|
9 |
model = AutoModelForCausalLM.from_pretrained("BatsResearch/bonito-v1")
|
10 |
tokenizer = AutoTokenizer.from_pretrained("BatsResearch/bonito-v1")
|
11 |
model.to("cuda")
|
|
|
30 |
top_p=top_p,
|
31 |
do_sample=True,
|
32 |
)
|
33 |
+
pred_start = int(input_ids.shape[-1])
|
34 |
|
35 |
+
response = tokenizer.decode(output[0][pred_start:], skip_special_tokens=True)
|
36 |
|
37 |
+
# check if <|pipe|> is in the response
|
38 |
+
if "<|pipe|>" in response:
|
39 |
+
pair = response.split("<|pipe|>")
|
40 |
+
instruction = pair[0].strip().replace("{{context}}", message)
|
41 |
+
response = pair[1].strip()
|
42 |
+
else:
|
43 |
+
# fallback
|
44 |
+
instruction = pair[0].strip().replace("{{context}}", message)
|
45 |
+
response = "Unable to generate response. Please regenerate."
|
46 |
|
47 |
+
return instruction, response
|
|
|
|
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
task_types = [
|
50 |
"extractive question answering",
|
51 |
"multiple-choice question answering",
|
|
|
73 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
74 |
gr.Dropdown(task_types, label="Task type"),
|
75 |
],
|
76 |
+
outputs=[gr.Textbox(label="Input"), gr.Textbox(label="Output")],
|
77 |
additional_inputs=[
|
78 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
79 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|