nielsr HF staff commited on
Commit
eed789a
·
1 Parent(s): 93dbd11

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +63 -0
app.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.system('pip install git+https://github.com/huggingface/transformers --upgrade')
3
+
4
+ import gradio as gr
5
+ from transformers import ImageGPTFeatureExtractor, ImageGPTForCausalLM
6
+ import torch
7
+ import requests
8
+ from PIL import Image
9
+ import os
10
+ import matplotlib.pyplot as plt
11
+
12
+ feature_extractor = ImageGPTFeatureExtractor.from_pretrained("openai/imagegpt-small")
13
+ model = ImageGPTForCausalLM.from_pretrained("openai/imagegpt-small")
14
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
+ model.to(device)
16
+
17
+ # load image examples
18
+ urls = ['https://assetsnffrgf-a.akamaihd.net/assets/m/502013285/univ/art/502013285_univ_sqr_xl.jpg']
19
+ for idx, url in enumerate(urls):
20
+ image = Image.open(requests.get(url, stream=True).raw)
21
+ image.save(f"image_{idx}.png")
22
+
23
+ def process_image(image):
24
+ # prepare 8 images, shape (8, 1024)
25
+ encoding = feature_extractor([image for _ in range(8)], return_tensors="pt")
26
+
27
+ # create primers
28
+ samples = encoding.pixel_values.numpy()
29
+ n_px_crop = 16
30
+ primers = samples.reshape(-1,n_px*n_px)[:,:n_px_crop*n_px] # crop top n_px_crop rows. These will be the conditioning tokens
31
+
32
+ # generate (no beam search)
33
+ context = np.concatenate((np.full((batch_size, 1), model.config.vocab_size - 1), primers), axis=1)
34
+ context = torch.tensor(context).to(device)
35
+ output = model.generate(input_ids=context, max_length=n_px*n_px + 1, temperature=1.0, do_sample=True, top_k=40)
36
+
37
+ # decode back to images
38
+ samples = output[:,1:].cpu().detach().numpy()
39
+ samples_img = [np.reshape(np.rint(127.5 * (clusters[s] + 1.0)), [n_px, n_px, 3]).astype(np.uint8) for s in samples] # convert color cluster tokens back to pixels
40
+
41
+ # save as list of files
42
+ completions = []
43
+ output_dir = '.'
44
+ for i in range(len(samples_img)):
45
+ fname = os.path.join(output_dir, "completion" + str(i) + ".png")
46
+ plt.imsave(fname=fname, arr=samples_img[i], format='png')
47
+ completions.append(fname)
48
+
49
+ return completions
50
+
51
+ title = "Interactive demo: ImageGPT"
52
+ description = "Demo for OpenAI's ImageGPT: Generative Pretraining from Pixels. To use it, simply upload an image or use the example image below and click 'submit'. Results will show up in a few seconds."
53
+ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>ImageGPT: Generative Pretraining from Pixels</a> | <a href='https://openai.com/blog/image-gpt/'>Official blog</a></p>"
54
+ examples =[["image_0.png"]]
55
+
56
+ iface = gr.Interface(fn=process_image,
57
+ inputs=gr.inputs.Image(type="pil"),
58
+ outputs=[gr.outputs.Image(type='file', label=f'completion_{i}') for i in range(len(samples_img))],
59
+ title=title,
60
+ description=description,
61
+ article=article,
62
+ examples=examples)
63
+ iface.launch(debug=True)