|
import os |
|
os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html') |
|
os.system("git clone https://github.com/microsoft/unilm.git") |
|
|
|
import sys |
|
sys.path.append("unilm") |
|
|
|
import cv2 |
|
|
|
from unilm.dit.object_detection.ditod import add_vit_config |
|
|
|
from detectron2.config import CfgNode as CN |
|
from detectron2.config import get_cfg |
|
from detectron2.utils.visualizer import ColorMode, Visualizer |
|
from detectron2.data import MetadataCatalog |
|
from detectron2.engine import DefaultPredictor |
|
|
|
import gradio as gr |
|
|
|
|
|
|
|
cfg = get_cfg() |
|
add_vit_config(cfg) |
|
cfg.merge_from_file("cascade_dit_base.yml") |
|
|
|
|
|
cfg.MODEL.WEIGHTS = "https://layoutlm.blob.core.windows.net/dit/dit-fts/publaynet_dit-b_mrcnn.pth" |
|
|
|
|
|
|
|
cfg.MODEL.DEVICE='cpu' |
|
|
|
|
|
predictor = DefaultPredictor(cfg) |
|
|
|
|
|
def analyze_image(img): |
|
md = MetadataCatalog.get(cfg.DATASETS.TEST[0]) |
|
if cfg.DATASETS.TEST[0]=='icdar2019_test': |
|
md.set(thing_classes=["table"]) |
|
else: |
|
md.set(thing_classes=["text","title","list","table","figure"]) |
|
|
|
output = predictor(img)["instances"] |
|
v = Visualizer(img[:, :, ::-1], |
|
md, |
|
scale=1.0, |
|
instance_mode=ColorMode.SEGMENTATION) |
|
result = v.draw_instance_predictions(output.to("cpu")) |
|
result_image = result.get_image()[:, :, ::-1] |
|
|
|
return result_image |
|
|
|
title = "Interactive demo: Document Layout Analysis with DiT" |
|
description = "This is a demo for Microsoft's Document Image Transformer (DiT)." |
|
examples =[['publaynet_example.jpeg']] |
|
|
|
iface = gr.Interface(fn=analyze_image, |
|
inputs=gr.inputs.Image(type="numpy"), |
|
outputs=gr.outputs.Image(type="numpy", label="analyzed image"), |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=examples, |
|
enable_queue=True) |
|
iface.launch(debug=True) |