nielsr's picture
nielsr HF staff
Update app.py
690f166
raw
history blame
2.11 kB
import os
os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html')
os.system("git clone https://github.com/microsoft/unilm.git")
import sys
sys.path.append("unilm")
import cv2
from unilm.dit.object_detection.ditod import add_vit_config
from detectron2.config import CfgNode as CN
from detectron2.config import get_cfg
from detectron2.utils.visualizer import ColorMode, Visualizer
from detectron2.data import MetadataCatalog
from detectron2.engine import DefaultPredictor
import gradio as gr
# Step 1: instantiate config
cfg = get_cfg()
add_vit_config(cfg)
cfg.merge_from_file("cascade_dit_base.yml")
# Step 2: add model weights URL to config
cfg.MODEL.WEIGHTS = "https://layoutlm.blob.core.windows.net/dit/dit-fts/publaynet_dit-b_mrcnn.pth"
# Step 3: set device
# TODO also support GPU
cfg.MODEL.DEVICE='cpu'
# Step 4: define model
predictor = DefaultPredictor(cfg)
def analyze_image(img):
md = MetadataCatalog.get(cfg.DATASETS.TEST[0])
if cfg.DATASETS.TEST[0]=='icdar2019_test':
md.set(thing_classes=["table"])
else:
md.set(thing_classes=["text","title","list","table","figure"])
output = predictor(img)["instances"]
v = Visualizer(img[:, :, ::-1],
md,
scale=1.0,
instance_mode=ColorMode.SEGMENTATION)
result = v.draw_instance_predictions(output.to("cpu"))
result_image = result.get_image()[:, :, ::-1]
return result_image
title = "Interactive demo: Document Layout Analysis with DiT"
description = "This is a demo for Microsoft's Document Image Transformer (DiT)."
examples =[['publaynet_example.jpeg']]
iface = gr.Interface(fn=analyze_image,
inputs=gr.inputs.Image(type="numpy"),
outputs=gr.outputs.Image(type="numpy", label="analyzed image"),
title=title,
description=description,
article=article,
examples=examples,
enable_queue=True)
iface.launch(debug=True)