nickmuchi's picture
Update app.py
b099fa2
raw
history blame
8.67 kB
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import validators, re
from fake_useragent import UserAgent
from bs4 import BeautifulSoup
import streamlit as st
from transformers import pipeline
import time
import base64
import requests
import docx2txt
from io import StringIO
from PyPDF2 import PdfFileReader
import warnings
import nltk
nltk.download('punkt')
from nltk import sent_tokenize
warnings.filterwarnings("ignore")
# In[2]:
time_str = time.strftime("%d%m%Y-%H%M%S")
#Functions
def article_text_extractor(url: str):
'''Extract text from url and divide text into chunks if length of text is more than 500 words'''
ua = UserAgent()
headers = {'User-Agent':str(ua.chrome)}
r = requests.get(url,headers=headers)
soup = BeautifulSoup(r.text, "html.parser")
title_text = soup.find_all(["h1"])
para_text = soup.find_all(["p"])
article_text = [result.text for result in para_text]
article_header = [result.text for result in title_text][0]
article = " ".join(article_text)
article = article.replace(".", ".<eos>")
article = article.replace("!", "!<eos>")
article = article.replace("?", "?<eos>")
sentences = article.split("<eos>")
current_chunk = 0
chunks = []
for sentence in sentences:
if len(chunks) == current_chunk + 1:
if len(chunks[current_chunk]) + len(sentence.split(" ")) <= 500:
chunks[current_chunk].extend(sentence.split(" "))
else:
current_chunk += 1
chunks.append(sentence.split(" "))
else:
print(current_chunk)
chunks.append(sentence.split(" "))
for chunk_id in range(len(chunks)):
chunks[chunk_id] = " ".join(chunks[chunk_id])
return article_header, chunks
def chunk_clean_text(text):
sentences = sent_tokenize(text)
current_chunk = 0
chunks = []
for sentence in sentences:
if len(chunks) == current_chunk + 1:
if len(chunks[current_chunk]) + len(sentence.split(" ")) <= 500:
chunks[current_chunk].extend(sentence.split(" "))
else:
current_chunk += 1
chunks.append(sentence.split(" "))
else:
print(current_chunk)
chunks.append(sentence.split(" "))
for chunk_id in range(len(chunks)):
chunks[chunk_id] = " ".join(chunks[chunk_id])
return chunks
def preprocess_plain_text(x):
x = x.encode("ascii", "ignore").decode() # unicode
x = re.sub(r"https*\S+", " ", x) # url
x = re.sub(r"@\S+", " ", x) # mentions
x = re.sub(r"#\S+", " ", x) # hastags
x = re.sub(r"\s{2,}", " ", x) # over spaces
x = re.sub("[^.,!?A-Za-z0-9]+", " ", x) # special charachters except .,!?
return x
def extract_pdf(file):
'''Extract text from PDF file'''
pdfReader = PdfFileReader(file)
count = pdfReader.numPages
all_text = ""
for i in range(count):
page = pdfReader.getPage(i)
all_text += page.extractText()
return all_text
def extract_text_from_file(file):
'''Extract text from uploaded file'''
# read text file
if file.type == "text/plain":
# To convert to a string based IO:
stringio = StringIO(file.getvalue().decode("utf-8"))
# To read file as string:
file_text = stringio.read()
# read pdf file
elif file.type == "application/pdf":
file_text = extract_pdf(file)
# read docx file
elif (
file.type
== "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
):
file_text = docx2txt.process(file)
return file_text
def summary_downloader(raw_text):
b64 = base64.b64encode(raw_text.encode()).decode()
new_filename = "new_text_file_{}_.txt".format(time_str)
st.markdown("#### Download Summary as a File ###")
href = f'<a href="data:file/txt;base64,{b64}" download="{new_filename}">Click to Download!!</a>'
st.markdown(href,unsafe_allow_html=True)
@st.cache(allow_output_mutation=True)
def facebook_model():
summarizer = pipeline('summarization',model='facebook/bart-large-cnn')
return summarizer
@st.cache(allow_output_mutation=True)
def schleifer_model():
summarizer = pipeline('summarization',model='sshleifer/distilbart-cnn-12-6')
return summarizer
#Streamlit App
st.title("Article Text and Link Extractive Summarizer πŸ“")
model_type = st.sidebar.selectbox(
"Model type", options=["Facebook-Bart", "Sshleifer-DistilBart"]
)
max_len= st.sidebar.slider("Maximum length of the summarized text",min_value=50,max_value=500)
min_len= st.sidebar.slider("Minimum length of the summarized text",min_value=10)
st.markdown(
"Model Source: [Facebook-Bart-large-CNN](https://huggingface.co/facebook/bart-large-cnn) and [Sshleifer-distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6)"
)
st.markdown(
"""The app supports extractive summarization which aims to identify the salient information that is then extracted and grouped together to form a concise summary.
For documents or text that is more than 500 words long, the app will divide the text into chunks and summarize each chunk. Please note when using the sidebar slider, those values represent the min/max text length per chunk of text to be summarized. If your article to be summarized is 1000 words, it will be divided into two chunks of 500 words first then the default max length of 100 words is applied per chunk, resulting in a summarized text with 200 words maximum.
There are two models available to choose from:""")
st.markdown("""
- Facebook-Bart, trained on large [CNN and Daily Mail](https://huggingface.co/datasets/cnn_dailymail) news articles.
- Sshleifer-Distilbart, which is a distilled (smaller) version of the large Bart model."""
)
st.markdown("""Please do note that the model will take longer to generate summaries for documents that are too long.""")
st.markdown(
"The app only ingests the below formats for summarization task:"
)
st.markdown(
"""- Raw text entered in text box.
- URL of an article to be summarized.
- Documents with .txt, .pdf or .docx file formats."""
)
st.markdown("---")
url_text = st.text_input("Please Enter a url here")
st.markdown(
"<h3 style='text-align: center; color: red;'>OR</h3>",
unsafe_allow_html=True,
)
plain_text = st.text_input("Please Paste/Enter plain text here")
st.markdown(
"<h3 style='text-align: center; color: red;'>OR</h3>",
unsafe_allow_html=True,
)
upload_doc = st.file_uploader(
"Upload a .txt, .pdf, .docx file for summarization"
)
is_url = validators.url(url_text)
if is_url:
# complete text, chunks to summarize (list of sentences for long docs)
article_title,chunks = article_text_extractor(url=url_text)
elif upload_doc:
clean_text = chunk_clean_text(preprocess_plain_text(extract_text_from_file(upload_doc)))
else:
clean_text = chunk_clean_text(preprocess_plain_text(plain_text))
summarize = st.button("Summarize")
# called on toggle button [summarize]
if summarize:
if model_type == "Facebook-Bart":
if is_url:
text_to_summarize = chunks
else:
text_to_summarize = clean_text
with st.spinner(
text="Loading Facebook-Bart Model and Extracting summary. This might take a few seconds depending on the length of your text..."
):
summarizer_model = facebook_model()
summarized_text = summarizer_model(text_to_summarize, max_length=max_len, min_length=min_len)
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
elif model_type == "Sshleifer-DistilBart":
if is_url:
text_to_summarize = chunks
else:
text_to_summarize = clean_text
with st.spinner(
text="Loading Sshleifer-DistilBart Model and Extracting summary. This might take a few seconds depending on the length of your text..."
):
summarizer_model = schleifer_model()
summarized_text = summarizer_model(text_to_summarize, max_length=max_len, min_length=min_len)
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
# final summarized output
st.subheader("Summarized text")
if is_url:
# view summarized text (expander)
st.markdown(f"Article title: {article_title}")
st.write(summarized_text)
summary_downloader(summarized_text)
# In[ ]: