Update functions.py
Browse files- functions.py +1 -1
functions.py
CHANGED
@@ -132,7 +132,7 @@ def load_models():
|
|
132 |
ner_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
133 |
emb_tokenizer = AutoTokenizer.from_pretrained('google/flan-t5-xl')
|
134 |
sent_pipe = pipeline("text-classification",model=q_model, tokenizer=q_tokenizer)
|
135 |
-
sum_pipe = pipeline("summarization",model="philschmid/flan-t5-base-samsum"
|
136 |
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True)
|
137 |
cross_encoder = CrossEncoder('cross-encoder/mmarco-mMiniLMv2-L12-H384-v1') #cross-encoder/ms-marco-MiniLM-L-12-v2
|
138 |
sbert = SentenceTransformer('all-MiniLM-L6-v2')
|
|
|
132 |
ner_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
133 |
emb_tokenizer = AutoTokenizer.from_pretrained('google/flan-t5-xl')
|
134 |
sent_pipe = pipeline("text-classification",model=q_model, tokenizer=q_tokenizer)
|
135 |
+
sum_pipe = pipeline("summarization",model="philschmid/flan-t5-base-samsum")
|
136 |
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True)
|
137 |
cross_encoder = CrossEncoder('cross-encoder/mmarco-mMiniLMv2-L12-H384-v1') #cross-encoder/ms-marco-MiniLM-L-12-v2
|
138 |
sbert = SentenceTransformer('all-MiniLM-L6-v2')
|