nickmuchi commited on
Commit
8ea204b
·
1 Parent(s): cb9fc07

Update functions.py

Browse files
Files changed (1) hide show
  1. functions.py +7 -7
functions.py CHANGED
@@ -6,7 +6,7 @@ import plotly_express as px
6
  import nltk
7
  import plotly.graph_objects as go
8
  from optimum.onnxruntime import ORTModelForSequenceClassification
9
- from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification,WhisperProcessor, WhisperForConditionalGeneration
10
  from sentence_transformers import SentenceTransformer, CrossEncoder, util
11
  import streamlit as st
12
  import en_core_web_lg
@@ -29,8 +29,8 @@ margin-bottom: 2.5rem">{}</div> """
29
 
30
  @st.experimental_singleton(suppress_st_warning=True)
31
  def load_models():
32
- #asr_model = whisper.load_model("small")
33
- asr_pipe = pipeline("automatic-speech-recognition",model = "openai/whisper-small")
34
  q_model = ORTModelForSequenceClassification.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
35
  ner_model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
36
  q_tokenizer = AutoTokenizer.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
@@ -41,7 +41,7 @@ def load_models():
41
  sbert = SentenceTransformer("all-mpnet-base-v2")
42
  cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
43
 
44
- return asr_pipe, sent_pipe, sum_pipe, ner_pipe, sbert, cross_encoder
45
 
46
  @st.experimental_singleton(suppress_st_warning=True)
47
  def get_spacy():
@@ -57,12 +57,12 @@ def inference(link, upload):
57
  yt = YouTube(link)
58
  title = yt.title
59
  path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp4")
60
- results = asr_pipe("audio.mp4")
61
 
62
  return results['text'], yt.title
63
 
64
  elif upload:
65
- results = asr_pipe(upload)
66
 
67
  return results['text'], "Transcribed Earnings Audio"
68
 
@@ -306,4 +306,4 @@ def fin_ext(text):
306
  return make_spans(text,results)
307
 
308
  nlp = get_spacy()
309
- asr_pipe, sent_pipe, sum_pipe, ner_pipe, sbert, cross_encoder = load_models()
 
6
  import nltk
7
  import plotly.graph_objects as go
8
  from optimum.onnxruntime import ORTModelForSequenceClassification
9
+ from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification
10
  from sentence_transformers import SentenceTransformer, CrossEncoder, util
11
  import streamlit as st
12
  import en_core_web_lg
 
29
 
30
  @st.experimental_singleton(suppress_st_warning=True)
31
  def load_models():
32
+ asr_model = whisper.load_model("base")
33
+ #asr_pipe = pipeline("automatic-speech-recognition",model = "openai/whisper-small")
34
  q_model = ORTModelForSequenceClassification.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
35
  ner_model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
36
  q_tokenizer = AutoTokenizer.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
 
41
  sbert = SentenceTransformer("all-mpnet-base-v2")
42
  cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
43
 
44
+ return asr_model, sent_pipe, sum_pipe, ner_pipe, sbert, cross_encoder
45
 
46
  @st.experimental_singleton(suppress_st_warning=True)
47
  def get_spacy():
 
57
  yt = YouTube(link)
58
  title = yt.title
59
  path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp4")
60
+ results = asr_model.transcribe(path)
61
 
62
  return results['text'], yt.title
63
 
64
  elif upload:
65
+ results = asr_model.trasncribe(upload)
66
 
67
  return results['text'], "Transcribed Earnings Audio"
68
 
 
306
  return make_spans(text,results)
307
 
308
  nlp = get_spacy()
309
+ asr_model, sent_pipe, sum_pipe, ner_pipe, sbert, cross_encoder = load_models()