|
import streamlit as st |
|
from functions import * |
|
|
|
st.set_page_config(page_title="Earnings Semantic Search", page_icon="π") |
|
st.sidebar.header("Semantic Search") |
|
st.markdown("## Earnings Semantic Search with SBert") |
|
|
|
def gen_sentiment(text): |
|
'''Generate sentiment of given text''' |
|
return sent_pipe(text)[0]['label'] |
|
|
|
bi_enc_options = ["multi-qa-mpnet-base-dot-v1","all-MiniLM-L12-v2","all-mpnet-base-v2"] |
|
|
|
search_input = st.text_input( |
|
label='Enter Your Search Query',value= "What key challenges did the business face?", key='search') |
|
|
|
sbert_model_name = st.sidebar.selectbox("Embedding Model", options=bi_enc_options, key='sbox') |
|
|
|
top_k = 2 |
|
|
|
window_size = st.sidebar.slider("Number of Sentences Generated in Search Response",min_value=1,max_value=7,value=3) |
|
|
|
try: |
|
|
|
if search_input: |
|
|
|
if "sen_df" in st.session_state and "earnings_passages" in st.session_state: |
|
|
|
|
|
sen_df = st.session_state['sen_df'] |
|
|
|
passages = preprocess_plain_text(st.session_state['earnings_passages'],window_size=window_size) |
|
|
|
with st.spinner( |
|
text=f"Loading {sbert_model_name} encoder..." |
|
): |
|
sbert = load_sbert(sbert_model_name) |
|
|
|
|
|
|
|
|
|
corpus_embeddings = sbert.encode(passages, convert_to_tensor=True, show_progress_bar=True) |
|
question_embedding = sbert.encode(search_input, convert_to_tensor=True) |
|
question_embedding = question_embedding.cpu() |
|
hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k) |
|
hits = hits[0] |
|
|
|
|
|
|
|
cross_inp = [[search_input, passages[hit['corpus_id']]] for hit in hits] |
|
cross_scores = cross_encoder.predict(cross_inp) |
|
|
|
|
|
for idx in range(len(cross_scores)): |
|
hits[idx]['cross-score'] = cross_scores[idx] |
|
|
|
|
|
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True) |
|
|
|
score='cross-score' |
|
df = pd.DataFrame([(hit[score],passages[hit['corpus_id']]) for hit in hits[0:int(top_k)]],columns=['Score','Text']) |
|
df['Score'] = round(df['Score'],2) |
|
df['Sentiment'] = df.Text.apply(gen_sentiment) |
|
|
|
def gen_annotated_text(df): |
|
'''Generate annotated text''' |
|
|
|
tag_list=[] |
|
for row in df.itertuples(): |
|
label = row[3] |
|
text = row[2] |
|
if label == 'Positive': |
|
tag_list.append((text,label,'#8fce00')) |
|
elif label == 'Negative': |
|
tag_list.append((text,label,'#f44336')) |
|
else: |
|
tag_list.append((text,label,'#000000')) |
|
|
|
return tag_list |
|
|
|
text_annotations = gen_annotated_text(df) |
|
|
|
first, second = text_annotations[0], text_annotations[1] |
|
|
|
|
|
with st.expander(label='Best Search Query Result', expanded=True): |
|
annotated_text(first) |
|
|
|
with st.expander(label='Alternative Search Query Result'): |
|
annotated_text(second) |
|
|
|
else: |
|
|
|
st.write('Please ensure you have entered the YouTube URL or uploaded the Earnings Call file') |
|
|
|
else: |
|
|
|
st.write('Please ensure you have entered the YouTube URL or uploaded the Earnings Call file') |
|
|
|
except RuntimeError: |
|
|
|
st.write('Please ensure you have entered the YouTube URL or uploaded the Earnings Call file') |
|
|
|
|
|
|