File size: 6,984 Bytes
50dd923 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
SentenceTransformers Documentation
=================================================
SentenceTransformers is a Python framework for state-of-the-art sentence, text and image embeddings. The initial work is described in our paper `Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks <https://arxiv.org/abs/1908.10084>`_.
You can use this framework to compute sentence / text embeddings for more than 100 languages. These embeddings can then be compared e.g. with cosine-similarity to find sentences with a similar meaning. This can be useful for `semantic textual similar <docs/usage/semantic_textual_similarity.html>`_, `semantic search <examples/applications/semantic-search/README.html>`_, or `paraphrase mining <examples/applications/paraphrase-mining/README.html>`_.
The framework is based on `PyTorch <https://pytorch.org/>`_ and `Transformers <https://huggingface.co/transformers/>`_ and offers a large collection of `pre-trained models <docs/pretrained_models.html>`_ tuned for various tasks. Further, it is easy to `fine-tune your own models <docs/training/overview.html>`_.
Installation
=================================================
You can install it using pip:
.. code-block:: python
pip install -U sentence-transformers
We recommend **Python 3.6** or higher, and at least **PyTorch 1.6.0**. See `installation <docs/installation.html>`_ for further installation options, especially if you want to use a GPU.
Usage
=================================================
The usage is as simple as:
.. code-block:: python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')
#Our sentences we like to encode
sentences = ['This framework generates embeddings for each input sentence',
'Sentences are passed as a list of string.',
'The quick brown fox jumps over the lazy dog.']
#Sentences are encoded by calling model.encode()
embeddings = model.encode(sentences)
#Print the embeddings
for sentence, embedding in zip(sentences, embeddings):
print("Sentence:", sentence)
print("Embedding:", embedding)
print("")
Performance
=========================
Our models are evaluated extensively and achieve state-of-the-art performance on various tasks. Further, the code is tuned to provide the highest possible speed. Have a look at `Pre-Trained Models <https://www.sbert.net/docs/pretrained_models.html#sentence-embedding-models/>`_ for an overview of available models and the respective performance on different tasks.
Contact
=========================
Contact person: Nils Reimers, [email protected]
https://www.ukp.tu-darmstadt.de/
Don't hesitate to send us an e-mail or report an issue, if something is broken (and it shouldn't be) or if you have further questions.
*This repository contains experimental software and is published for the sole purpose of giving additional background details on the respective publication.*
Citing & Authors
=========================
If you find this repository helpful, feel free to cite our publication `Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks <https://arxiv.org/abs/1908.10084>`_:
.. code-block:: bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
If you use one of the multilingual models, feel free to cite our publication `Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation <https://arxiv.org/abs/2004.09813>`_:
.. code-block:: bibtex
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
If you use the code for `data augmentation <https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/data_augmentation>`_, feel free to cite our publication `Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks <https://arxiv.org/abs/2010.08240>`_:
.. code-block:: bibtex
@inproceedings{thakur-2020-AugSBERT,
title = "Augmented {SBERT}: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks",
author = "Thakur, Nandan and Reimers, Nils and Daxenberger, Johannes and Gurevych, Iryna",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2021.naacl-main.28",
pages = "296--310",
}
.. toctree::
:maxdepth: 2
:caption: Overview
docs/installation
docs/quickstart
docs/pretrained_models
docs/pretrained_cross-encoders
docs/publications
docs/hugging_face
.. toctree::
:maxdepth: 2
:caption: Usage
examples/applications/computing-embeddings/README
docs/usage/semantic_textual_similarity
examples/applications/semantic-search/README
examples/applications/retrieve_rerank/README
examples/applications/clustering/README
examples/applications/paraphrase-mining/README
examples/applications/parallel-sentence-mining/README
examples/applications/cross-encoder/README
examples/applications/image-search/README
.. toctree::
:maxdepth: 2
:caption: Training
docs/training/overview
examples/training/multilingual/README
examples/training/distillation/README
examples/training/cross-encoder/README
examples/training/data_augmentation/README
.. toctree::
:maxdepth: 2
:caption: Training Examples
examples/training/sts/README
examples/training/nli/README
examples/training/paraphrases/README
examples/training/quora_duplicate_questions/README
examples/training/ms_marco/README
.. toctree::
:maxdepth: 2
:caption: Unsupervised Learning
examples/unsupervised_learning/README
examples/domain_adaptation/README
.. toctree::
:maxdepth: 1
:caption: Package Reference
docs/package_reference/SentenceTransformer
docs/package_reference/util
docs/package_reference/models
docs/package_reference/losses
docs/package_reference/evaluation
docs/package_reference/datasets
docs/package_reference/cross_encoder
|