File size: 1,763 Bytes
1b4ddbc c89886d 1b4ddbc 8a619b7 23253c8 5a6635a 3cf0631 5a6635a da7feb3 dfc26ae 5a6635a 3cf0631 b65c4cd b464a58 dc5e9b3 b65c4cd 3cf0631 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import streamlit as st
from functions import *
st.set_page_config(page_title="Earnings Summarization", page_icon="π")
st.sidebar.header("Earnings Summarization")
st.markdown("## Earnings Summarization with FaceBook-Bart")
max_len= st.slider("Maximum length of the summarized text",min_value=70,max_value=200,step=10,value=100)
min_len= st.slider("Minimum length of the summarized text",min_value=20,max_value=200,step=10)
st.markdown("####")
st.subheader("Summarized Earnings Call with matched Entities")
if "earnings_passages" not in st.session_state:
st.session_state["earnings_passages"] = ''
if st.session_state['earnings_passages']:
with st.spinner("Summarizing and matching entities, this takes a few seconds..."):
text_to_summarize = chunk_and_preprocess_text(st.session_state['earnings_passages'])
summarized_text = sum_pipe(text_to_summarize,max_length=max_len,min_length=min_len,clean_up_tokenization_spaces=True,no_repeat_ngram_size=4,
encoder_no_repeat_ngram_size=3,
repetition_penalty=3.5,
num_beams=4,
early_stopping=True)
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
entity_match_html = highlight_entities(text_to_summarize,summarized_text)
st.markdown("####")
with st.expander(label='Summarized Earnings Call',expanded=True):
st.write(entity_match_html, unsafe_allow_html=True)
st.markdown("####")
summary_downloader(summarized_text)
else:
st.write("No text to summarize detected, please ensure you have entered the YouTube URL on the Sentiment Analysis page") |