ngxson's picture
ngxson HF staff
Create app.py
edb9ee2 verified
raw
history blame
3.82 kB
import os
import subprocess
import signal
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
import gradio as gr
import tempfile
from huggingface_hub import HfApi, ModelCard, whoami
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from pathlib import Path
from textwrap import dedent
def process_model(ft_model_id: str, base_model_id: str, rank: str, private_repo, oauth_token: gr.OAuthToken | None):
if oauth_token is None or oauth_token.token is None:
raise gr.Error("You must be logged in")
model_name = ft_model_id.split('/')[-1]
if not os.path.exists("outputs"):
os.makedirs("outputs")
try:
api = HfApi(token=oauth_token.token)
with tempfile.TemporaryDirectory(dir="outputs") as outputdir:
result = subprocess.run([
"mergekit-extract-lora",
ft_model_id,
base_model_id,
outputdir,
f"--rank={rank}",
], shell=False, capture_output=True)
print(result)
if result.returncode != 0:
raise Exception(f"Error converting to LoRA PEFT {q_method}: {result.stderr}")
print("Model converted to LoRA PEFT successfully!")
print(f"Converted model path: {outputdir}")
# Check output dir
if not os.listdir(outputdir):
raise Exception("Output directory is empty!")
# Create repo
username = whoami(oauth_token.token)["name"]
new_repo_url = api.create_repo(repo_id=f"{username}/LoRA-{model_name}", exist_ok=True, private=private_repo)
new_repo_id = new_repo_url.repo_id
print("Repo created successfully!", new_repo_url)
# Upload files
api.upload_file(
folder_path=outputdir,
path_in_repo="",
repo_id=new_repo_id,
)
print("Uploaded", outputdir)
return (
f'<h1>βœ… DONE</h1><br/><br/>Find your repo here: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{new_repo_id}</a>'
)
except Exception as e:
return (f"<h1>❌ ERROR</h1><br/><br/>{e}")
css="""/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}
"""
# Create Gradio interface
with gr.Blocks(css=css) as demo:
gr.Markdown("You must be logged in.")
gr.LoginButton(min_width=250)
ft_model_id = HuggingfaceHubSearch(
label="Fine tuned model repository",
placeholder="Search for repository on Huggingface",
search_type="model",
)
base_model_id = HuggingfaceHubSearch(
label="Base tuned model repository",
placeholder="Search for repository on Huggingface",
search_type="model",
)
rank = gr.Dropdown(
["16", "32", "64", "128"],
label="LoRA rank",
info="Higher the rank, better the result, but heavier the adapter",
value="32",
filterable=False,
visible=True
)
private_repo = gr.Checkbox(
value=False,
label="Private Repo",
info="Create a private repo under your username."
)
iface = gr.Interface(
fn=process_model,
inputs=[
ft_model_id,
base_model_id,
rank,
private_repo,
],
outputs=[
gr.Markdown(label="output"),
],
title="Convert fine tuned model into LoRA with mergekit-extract-lora",
description="The space takes a fine tuned model, a base model, then make a PEFT-compatible LoRA adapter based on the difference between 2 models.",
api_name=False
)
# Launch the interface
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)