File size: 5,762 Bytes
edb9ee2 337b381 edb9ee2 337b381 edb9ee2 337b381 edb9ee2 337b381 edb9ee2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import os
import subprocess
import signal
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
import gradio as gr
import tempfile
import torch
from huggingface_hub import HfApi, ModelCard, whoami
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from pathlib import Path
from textwrap import dedent
###########
import subprocess
import threading
from queue import Queue, Empty
def stream_output(pipe, queue):
"""Read output from pipe and put it in the queue."""
for line in iter(pipe.readline, b''):
queue.put(line.decode('utf-8').rstrip())
pipe.close()
def run_command(command):
# Create process with pipes for stdout and stderr
process = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
bufsize=1,
universal_newlines=False
)
# Create queues to store output
stdout_queue = Queue()
stderr_queue = Queue()
# Create and start threads to read output
stdout_thread = threading.Thread(target=stream_output, args=(process.stdout, stdout_queue))
stderr_thread = threading.Thread(target=stream_output, args=(process.stderr, stderr_queue))
stdout_thread.daemon = True
stderr_thread.daemon = True
stdout_thread.start()
stderr_thread.start()
output_stdout = ""
output_stderr = ""
# Monitor output in real-time
while process.poll() is None:
# Check stdout
try:
stdout_line = stdout_queue.get_nowait()
print(f"STDOUT: {stdout_line}")
output_stdout += stdout_line + "\n"
except Empty:
pass
# Check stderr
try:
stderr_line = stderr_queue.get_nowait()
print(f"STDERR: {stderr_line}")
output_stderr += stderr_line + "\n"
except Empty:
pass
# Get remaining lines
stdout_thread.join()
stderr_thread.join()
return (process.returncode, output_stdout, output_stderr)
###########
def process_model(ft_model_id: str, base_model_id: str, rank: str, private_repo, oauth_token: gr.OAuthToken | None):
if oauth_token is None or oauth_token.token is None:
raise gr.Error("You must be logged in")
model_name = ft_model_id.split('/')[-1]
if not os.path.exists("outputs"):
os.makedirs("outputs")
try:
api = HfApi(token=oauth_token.token)
with tempfile.TemporaryDirectory(dir="outputs") as outputdir:
device = "cuda" if torch.cuda.is_available() else "cpu"
(returncode, output_stdout, output_stderr) = run_command([
"mergekit-extract-lora",
ft_model_id,
base_model_id,
outputdir,
f"--rank={rank}",
f"--device={device}"
])
print("returncode", returncode)
print("output_stdout", output_stdout)
print("output_stderr", output_stderr)
if returncode != 0:
raise Exception(f"Error converting to LoRA PEFT {q_method}: {output_stderr}")
print("Model converted to LoRA PEFT successfully!")
print(f"Converted model path: {outputdir}")
# Check output dir
if not os.listdir(outputdir):
raise Exception("Output directory is empty!")
# Create repo
username = whoami(oauth_token.token)["name"]
new_repo_url = api.create_repo(repo_id=f"{username}/LoRA-{model_name}", exist_ok=True, private=private_repo)
new_repo_id = new_repo_url.repo_id
print("Repo created successfully!", new_repo_url)
# Upload files
api.upload_file(
folder_path=outputdir,
path_in_repo="",
repo_id=new_repo_id,
)
print("Uploaded", outputdir)
return (
f'<h1>β
DONE</h1><br/><br/>Find your repo here: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{new_repo_id}</a>'
)
except Exception as e:
return (f"<h1>β ERROR</h1><br/><br/>{e}")
css="""/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}
"""
# Create Gradio interface
with gr.Blocks(css=css) as demo:
gr.Markdown("You must be logged in.")
gr.LoginButton(min_width=250)
ft_model_id = HuggingfaceHubSearch(
label="Fine tuned model repository",
placeholder="Search for repository on Huggingface",
search_type="model",
)
base_model_id = HuggingfaceHubSearch(
label="Base tuned model repository",
placeholder="Search for repository on Huggingface",
search_type="model",
)
rank = gr.Dropdown(
["16", "32", "64", "128"],
label="LoRA rank",
info="Higher the rank, better the result, but heavier the adapter",
value="32",
filterable=False,
visible=True
)
private_repo = gr.Checkbox(
value=False,
label="Private Repo",
info="Create a private repo under your username."
)
iface = gr.Interface(
fn=process_model,
inputs=[
ft_model_id,
base_model_id,
rank,
private_repo,
],
outputs=[
gr.Markdown(label="output"),
],
title="Convert fine tuned model into LoRA with mergekit-extract-lora",
description="The space takes a fine tuned model, a base model, then make a PEFT-compatible LoRA adapter based on the difference between 2 models.",
api_name=False
)
# Launch the interface
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False) |