Spaces:
Runtime error
Runtime error
mwitiderrick
commited on
Commit
·
e155e73
1
Parent(s):
fcbc27a
Update app.py
Browse files
app.py
CHANGED
@@ -27,11 +27,6 @@ For example, you may want to process text and store the entities in different co
|
|
27 |
[Want to train a sparse model on your data? Checkout the documentation on sparse transfer learning](https://docs.neuralmagic.com/use-cases/natural-language-processing/question-answering)
|
28 |
'''
|
29 |
task = "ner"
|
30 |
-
dense_qa_pipeline = Pipeline.create(
|
31 |
-
task=task,
|
32 |
-
model_path="zoo:nlp/token_classification/bert-base/pytorch/huggingface/conll2003/base-none",
|
33 |
-
)
|
34 |
-
|
35 |
sparse_qa_pipeline = Pipeline.create(
|
36 |
task=task,
|
37 |
model_path="zoo:nlp/token_classification/bert-base/pytorch/huggingface/conll2003/12layer_pruned80_quant-none-vnni",
|
@@ -65,28 +60,15 @@ def map_ner(inference):
|
|
65 |
return entities
|
66 |
|
67 |
def run_pipeline(text):
|
68 |
-
dense_start = time.perf_counter()
|
69 |
-
|
70 |
-
dense_output = dense_qa_pipeline(text)
|
71 |
-
dense_entities = map_ner(dense_output)
|
72 |
-
|
73 |
-
dense_output = {"text": text, "entities": dense_entities}
|
74 |
-
|
75 |
-
dense_end = time.perf_counter()
|
76 |
-
dense_duration = (dense_end - dense_start) * 1000.0
|
77 |
-
|
78 |
sparse_start = time.perf_counter()
|
79 |
-
|
80 |
sparse_output = sparse_qa_pipeline(text)
|
81 |
sparse_entities = map_ner(sparse_output)
|
82 |
-
|
83 |
sparse_output = {"text": text, "entities": sparse_entities}
|
84 |
-
|
85 |
sparse_result = dict(sparse_output)
|
86 |
sparse_end = time.perf_counter()
|
87 |
sparse_duration = (sparse_end - sparse_start) * 1000.0
|
88 |
|
89 |
-
return sparse_output, sparse_duration
|
90 |
|
91 |
|
92 |
with gr.Blocks() as demo:
|
@@ -113,7 +95,7 @@ with gr.Blocks() as demo:
|
|
113 |
btn.click(
|
114 |
run_pipeline,
|
115 |
inputs=[text],
|
116 |
-
outputs=[sparse_answers,sparse_duration
|
117 |
)
|
118 |
|
119 |
if __name__ == "__main__":
|
|
|
27 |
[Want to train a sparse model on your data? Checkout the documentation on sparse transfer learning](https://docs.neuralmagic.com/use-cases/natural-language-processing/question-answering)
|
28 |
'''
|
29 |
task = "ner"
|
|
|
|
|
|
|
|
|
|
|
30 |
sparse_qa_pipeline = Pipeline.create(
|
31 |
task=task,
|
32 |
model_path="zoo:nlp/token_classification/bert-base/pytorch/huggingface/conll2003/12layer_pruned80_quant-none-vnni",
|
|
|
60 |
return entities
|
61 |
|
62 |
def run_pipeline(text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
sparse_start = time.perf_counter()
|
|
|
64 |
sparse_output = sparse_qa_pipeline(text)
|
65 |
sparse_entities = map_ner(sparse_output)
|
|
|
66 |
sparse_output = {"text": text, "entities": sparse_entities}
|
|
|
67 |
sparse_result = dict(sparse_output)
|
68 |
sparse_end = time.perf_counter()
|
69 |
sparse_duration = (sparse_end - sparse_start) * 1000.0
|
70 |
|
71 |
+
return sparse_output, sparse_duration
|
72 |
|
73 |
|
74 |
with gr.Blocks() as demo:
|
|
|
95 |
btn.click(
|
96 |
run_pipeline,
|
97 |
inputs=[text],
|
98 |
+
outputs=[sparse_answers,sparse_duration],
|
99 |
)
|
100 |
|
101 |
if __name__ == "__main__":
|