Spaces:
Runtime error
Runtime error
File size: 5,059 Bytes
d45924f 0363976 edeb660 738cbb6 edeb660 c4a60b7 edeb660 2b76624 d45924f 7f9fbda d45924f c4a60b7 edeb660 5ab71e8 edeb660 c4a60b7 d45924f 7f9fbda d45924f 7f9fbda d45924f 7f9fbda d45924f edeb660 fa1dc88 edeb660 d45924f edeb660 68931bd 7f9fbda d45924f edeb660 7f9fbda d45924f 7f9fbda d45924f c0bf69d d45924f c0bf69d d45924f e3f3f08 c0bf69d 7f9fbda c0bf69d d45924f c0bf69d d45924f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
from deepsparse import Pipeline
import time
import gradio as gr
markdownn = '''
# Named Entity Recognition Pipeline with DeepSparse
Named Entity Recognition is the task of extracting and locating named entities in a sentence. The entities include, people's names, location, organizations, etc.
![Named Entity Recognition Pipeline with DeepSparse](https://huggingface.co/spaces/neuralmagic/nlp-ner/resolve/main/named.png)
## What is DeepSparse?
DeepSparse is an inference runtime offering GPU-class performance on CPUs and APIs to integrate ML into your application. Sparsification is a powerful technique for optimizing models for inference, reducing the compute needed with a limited accuracy tradeoff. DeepSparse is designed to take advantage of model sparsity, enabling you to deploy models with the flexibility and scalability of software on commodity CPUs with the best-in-class performance of hardware accelerators, enabling you to standardize operations and reduce infrastructure costs.
Similar to Hugging Face, DeepSparse provides off-the-shelf pipelines for computer vision and NLP that wrap the model with proper pre- and post-processing to run performantly on CPUs by using sparse models.
SparseML Named Entity Recognition Pipelines integrate with Hugging Face’s Transformers library to enable the sparsification of a large set of transformers models.
### Inference API Example
Here is sample code for a token classification pipeline:
```python
from deepsparse import Pipeline
pipeline = Pipeline.create(task="ner", model_path="zoo:nlp/token_classification/distilbert-none/pytorch/huggingface/conll2003/pruned80_quant-none-vnni")
inference = pipeline(text)
print(inference)
```
## Use Case Description
The Named Entity Recognition Pipeline can process text before storing the information in a database.
For example, you may want to process text and store the entities in different columns depending on the entity type.
[Want to train a sparse model on your data? Checkout the documentation on sparse transfer learning](https://docs.neuralmagic.com/use-cases/natural-language-processing/question-answering)
'''
task = "ner"
dense_qa_pipeline = Pipeline.create(
task=task,
model_path="zoo:nlp/token_classification/bert-base/pytorch/huggingface/conll2003/base-none",
)
sparse_qa_pipeline = Pipeline.create(
task=task,
model_path="zoo:nlp/token_classification/bert-base/pytorch/huggingface/conll2003/12layer_pruned80_quant-none-vnni",
)
def map_ner(inference):
entities = []
for item in dict(inference)['predictions'][0]:
dictionary = dict(item)
entity = dictionary['entity']
if entity == "LABEL_0":
value = "O"
elif entity == "LABEL_1":
value = "B-PER"
elif entity == "LABEL_2":
value = "I-PER"
elif entity == "LABEL_3":
value = "-ORG"
elif entity == "LABEL_4":
value = "I-ORG"
elif entity == "LABEL_5":
value = "B-LOC"
elif entity == "LABEL_6":
value = "I-LOC"
elif entity == "LABEL_7":
value = "B-MISC"
else:
value = "I-MISC"
dictionary['entity'] = value
entities.append(dictionary)
return entities
def run_pipeline(text):
dense_start = time.perf_counter()
dense_output = dense_qa_pipeline(text)
dense_entities = map_ner(dense_output)
dense_output = {"text": text, "entities": dense_entities}
dense_end = time.perf_counter()
dense_duration = (dense_end - dense_start) * 1000.0
sparse_start = time.perf_counter()
sparse_output = sparse_qa_pipeline(text)
sparse_entities = map_ner(sparse_output)
sparse_output = {"text": text, "entities": sparse_entities}
sparse_result = dict(sparse_output)
sparse_end = time.perf_counter()
sparse_duration = (sparse_end - sparse_start) * 1000.0
return sparse_output, sparse_duration, dense_output, dense_duration
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Markdown(markdownn)
with gr.Column():
gr.Markdown("""
### Named Entity Recognition Demo
Using [token_classification/bert-base](https://sparsezoo.neuralmagic.com/models/nlp%2Ftoken_classification%2Fdistilbert-none%2Fpytorch%2Fhuggingface%2Fconll2003%2Fpruned80_quant-none-vnni)
""")
text = gr.Text(label="Text")
btn = gr.Button("Submit")
gr.Examples( [["We are flying from Texas to California"] ],inputs=[text],)
dense_answers = gr.HighlightedText(label="Dense model answer")
dense_duration = gr.Number(label="Dense Latency (ms):")
sparse_answers = gr.HighlightedText(label="Sparse model answers")
sparse_duration = gr.Number(label="Sparse Latency (ms):")
btn.click(
run_pipeline,
inputs=[text],
outputs=[sparse_answers,sparse_duration,dense_answers,dense_duration],
)
if __name__ == "__main__":
demo.launch() |