File size: 8,093 Bytes
b78b52f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# -*- coding: utf-8 -*-
"""
@author:XuMing([email protected])
@description: 
"""
import argparse
import json
import os
from threading import Thread

import torch
from peft import PeftModel
from transformers import (
    AutoModel,
    AutoModelForCausalLM,
    AutoTokenizer,
    BloomForCausalLM,
    BloomTokenizerFast,
    LlamaTokenizer,
    LlamaForCausalLM,
    TextIteratorStreamer,
    GenerationConfig,
)

from supervised_finetuning import get_conv_template

MODEL_CLASSES = {
    "bloom": (BloomForCausalLM, BloomTokenizerFast),
    "chatglm": (AutoModel, AutoTokenizer),
    "llama": (LlamaForCausalLM, LlamaTokenizer),
    "baichuan": (AutoModelForCausalLM, AutoTokenizer),
    "auto": (AutoModelForCausalLM, AutoTokenizer),
}


@torch.inference_mode()
def stream_generate_answer(
        model,
        tokenizer,
        prompt,
        device,
        do_print=True,
        max_new_tokens=512,
        temperature=0.7,
        repetition_penalty=1.0,
        context_len=2048,
        stop_str="</s>",
):
    streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=False)
    input_ids = tokenizer(prompt).input_ids
    max_src_len = context_len - max_new_tokens - 8
    input_ids = input_ids[-max_src_len:]
    generation_kwargs = dict(
        input_ids=torch.as_tensor([input_ids]).to(device),
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        repetition_penalty=repetition_penalty,
        streamer=streamer,
    )
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    generated_text = ""
    for new_text in streamer:
        stop = False
        pos = new_text.find(stop_str)
        if pos != -1:
            new_text = new_text[:pos]
            stop = True
        generated_text += new_text
        if do_print:
            print(new_text, end="", flush=True)
        if stop:
            break
    if do_print:
        print()
    return generated_text


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_type', default=None, type=str, required=True)
    parser.add_argument('--base_model', default=None, type=str, required=True)
    parser.add_argument('--lora_model', default="", type=str, help="If None, perform inference on the base model")
    parser.add_argument('--tokenizer_path', default=None, type=str)
    parser.add_argument('--template_name', default="vicuna", type=str,
                        help="Prompt template name, eg: alpaca, vicuna, baichuan-chat, chatglm2 etc.")
    parser.add_argument("--temperature", type=float, default=0.7)
    parser.add_argument("--repetition_penalty", type=float, default=1.0)
    parser.add_argument("--max_new_tokens", type=int, default=512)
    parser.add_argument('--data_file', default=None, type=str,
                        help="A file that contains instructions (one instruction per line)")
    parser.add_argument('--interactive', action='store_true', help="run in the instruction mode (single-turn)")
    parser.add_argument('--predictions_file', default='./predictions.json', type=str)
    parser.add_argument('--resize_emb', action='store_true', help='Whether to resize model token embeddings')
    parser.add_argument('--gpus', default="0", type=str)
    parser.add_argument('--only_cpu', action='store_true', help='only use CPU for inference')
    args = parser.parse_args()
    print(args)
    if args.only_cpu is True:
        args.gpus = ""
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
    load_type = torch.float16
    if torch.cuda.is_available():
        device = torch.device(0)
    else:
        device = torch.device('cpu')
    if args.tokenizer_path is None:
        args.tokenizer_path = args.base_model

    model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_path, trust_remote_code=True)
    base_model = model_class.from_pretrained(
        args.base_model,
        load_in_8bit=False,
        torch_dtype=load_type,
        low_cpu_mem_usage=True,
        device_map='auto',
        trust_remote_code=True,
    )
    try:
        base_model.generation_config = GenerationConfig.from_pretrained(args.base_model, trust_remote_code=True)
    except OSError:
        print("Failed to load generation config, use default.")
    if args.resize_emb:
        model_vocab_size = base_model.get_input_embeddings().weight.size(0)
        tokenzier_vocab_size = len(tokenizer)
        print(f"Vocab of the base model: {model_vocab_size}")
        print(f"Vocab of the tokenizer: {tokenzier_vocab_size}")
        if model_vocab_size != tokenzier_vocab_size:
            print("Resize model embeddings to fit tokenizer")
            base_model.resize_token_embeddings(tokenzier_vocab_size)

    if args.lora_model:
        model = PeftModel.from_pretrained(base_model, args.lora_model, torch_dtype=load_type, device_map='auto')
        print("Loaded lora model")
    else:
        model = base_model
    if device == torch.device('cpu'):
        model.float()
    model.eval()
    print(tokenizer)
    # test data
    if args.data_file is None:
        examples = ["介绍下北京", "乙肝和丙肝的区别?"]
    else:
        with open(args.data_file, 'r') as f:
            examples = [l.strip() for l in f.readlines()]
        print("first 10 examples:")
        for example in examples[:10]:
            print(example)

    # Chat
    prompt_template = get_conv_template(args.template_name)
    stop_str = tokenizer.eos_token if tokenizer.eos_token else prompt_template.stop_str

    if args.interactive:
        print("Welcome to the CLI application, use `clear` to remove the history, use `exit` to exit the application.")
        history = []
        while True:
            try:
                query = input(f"{prompt_template.roles[0]}: ")
            except UnicodeDecodeError:
                print("Detected decoding error at the inputs, please try again.")
                continue
            except Exception:
                raise
            if query == "":
                print("Please input text, try again.")
                continue
            if query.strip() == "exit":
                print("exit...")
                break
            if query.strip() == "clear":
                history = []
                print("history cleared.")
                continue

            print(f"{prompt_template.roles[1]}: ", end="", flush=True)

            history.append([query, ''])
            prompt = prompt_template.get_prompt(messages=history)
            response = stream_generate_answer(
                model,
                tokenizer,
                prompt,
                device,
                do_print=True,
                max_new_tokens=args.max_new_tokens,
                temperature=args.temperature,
                repetition_penalty=args.repetition_penalty,
                stop_str=stop_str,
            )
            if history:
                history[-1][-1] = response.strip()
    else:
        print("Start inference.")
        results = []
        for index, example in enumerate(examples):
            # Single turn inference
            history = [[example, '']]
            prompt = prompt_template.get_prompt(messages=history)
            response = stream_generate_answer(
                model,
                tokenizer,
                prompt,
                device,
                do_print=False,
                max_new_tokens=args.max_new_tokens,
                temperature=args.temperature,
                repetition_penalty=args.repetition_penalty,
                stop_str=stop_str,
            )
            response = response.strip()
            print(f"======={index}=======")
            print(f"Input: {example}\n")
            print(f"Output: {response}\n")
            results.append({"Input": prompt, "Output": response})

        with open(args.predictions_file, 'w', encoding='utf-8') as f:
            json.dump(results, f, ensure_ascii=False, indent=2)


if __name__ == '__main__':
    main()