Spaces:
Configuration error
Configuration error
File size: 8,093 Bytes
b78b52f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# -*- coding: utf-8 -*-
"""
@author:XuMing([email protected])
@description:
"""
import argparse
import json
import os
from threading import Thread
import torch
from peft import PeftModel
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoTokenizer,
BloomForCausalLM,
BloomTokenizerFast,
LlamaTokenizer,
LlamaForCausalLM,
TextIteratorStreamer,
GenerationConfig,
)
from supervised_finetuning import get_conv_template
MODEL_CLASSES = {
"bloom": (BloomForCausalLM, BloomTokenizerFast),
"chatglm": (AutoModel, AutoTokenizer),
"llama": (LlamaForCausalLM, LlamaTokenizer),
"baichuan": (AutoModelForCausalLM, AutoTokenizer),
"auto": (AutoModelForCausalLM, AutoTokenizer),
}
@torch.inference_mode()
def stream_generate_answer(
model,
tokenizer,
prompt,
device,
do_print=True,
max_new_tokens=512,
temperature=0.7,
repetition_penalty=1.0,
context_len=2048,
stop_str="</s>",
):
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=False)
input_ids = tokenizer(prompt).input_ids
max_src_len = context_len - max_new_tokens - 8
input_ids = input_ids[-max_src_len:]
generation_kwargs = dict(
input_ids=torch.as_tensor([input_ids]).to(device),
max_new_tokens=max_new_tokens,
temperature=temperature,
repetition_penalty=repetition_penalty,
streamer=streamer,
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
generated_text = ""
for new_text in streamer:
stop = False
pos = new_text.find(stop_str)
if pos != -1:
new_text = new_text[:pos]
stop = True
generated_text += new_text
if do_print:
print(new_text, end="", flush=True)
if stop:
break
if do_print:
print()
return generated_text
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model_type', default=None, type=str, required=True)
parser.add_argument('--base_model', default=None, type=str, required=True)
parser.add_argument('--lora_model', default="", type=str, help="If None, perform inference on the base model")
parser.add_argument('--tokenizer_path', default=None, type=str)
parser.add_argument('--template_name', default="vicuna", type=str,
help="Prompt template name, eg: alpaca, vicuna, baichuan-chat, chatglm2 etc.")
parser.add_argument("--temperature", type=float, default=0.7)
parser.add_argument("--repetition_penalty", type=float, default=1.0)
parser.add_argument("--max_new_tokens", type=int, default=512)
parser.add_argument('--data_file', default=None, type=str,
help="A file that contains instructions (one instruction per line)")
parser.add_argument('--interactive', action='store_true', help="run in the instruction mode (single-turn)")
parser.add_argument('--predictions_file', default='./predictions.json', type=str)
parser.add_argument('--resize_emb', action='store_true', help='Whether to resize model token embeddings')
parser.add_argument('--gpus', default="0", type=str)
parser.add_argument('--only_cpu', action='store_true', help='only use CPU for inference')
args = parser.parse_args()
print(args)
if args.only_cpu is True:
args.gpus = ""
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
load_type = torch.float16
if torch.cuda.is_available():
device = torch.device(0)
else:
device = torch.device('cpu')
if args.tokenizer_path is None:
args.tokenizer_path = args.base_model
model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_path, trust_remote_code=True)
base_model = model_class.from_pretrained(
args.base_model,
load_in_8bit=False,
torch_dtype=load_type,
low_cpu_mem_usage=True,
device_map='auto',
trust_remote_code=True,
)
try:
base_model.generation_config = GenerationConfig.from_pretrained(args.base_model, trust_remote_code=True)
except OSError:
print("Failed to load generation config, use default.")
if args.resize_emb:
model_vocab_size = base_model.get_input_embeddings().weight.size(0)
tokenzier_vocab_size = len(tokenizer)
print(f"Vocab of the base model: {model_vocab_size}")
print(f"Vocab of the tokenizer: {tokenzier_vocab_size}")
if model_vocab_size != tokenzier_vocab_size:
print("Resize model embeddings to fit tokenizer")
base_model.resize_token_embeddings(tokenzier_vocab_size)
if args.lora_model:
model = PeftModel.from_pretrained(base_model, args.lora_model, torch_dtype=load_type, device_map='auto')
print("Loaded lora model")
else:
model = base_model
if device == torch.device('cpu'):
model.float()
model.eval()
print(tokenizer)
# test data
if args.data_file is None:
examples = ["介绍下北京", "乙肝和丙肝的区别?"]
else:
with open(args.data_file, 'r') as f:
examples = [l.strip() for l in f.readlines()]
print("first 10 examples:")
for example in examples[:10]:
print(example)
# Chat
prompt_template = get_conv_template(args.template_name)
stop_str = tokenizer.eos_token if tokenizer.eos_token else prompt_template.stop_str
if args.interactive:
print("Welcome to the CLI application, use `clear` to remove the history, use `exit` to exit the application.")
history = []
while True:
try:
query = input(f"{prompt_template.roles[0]}: ")
except UnicodeDecodeError:
print("Detected decoding error at the inputs, please try again.")
continue
except Exception:
raise
if query == "":
print("Please input text, try again.")
continue
if query.strip() == "exit":
print("exit...")
break
if query.strip() == "clear":
history = []
print("history cleared.")
continue
print(f"{prompt_template.roles[1]}: ", end="", flush=True)
history.append([query, ''])
prompt = prompt_template.get_prompt(messages=history)
response = stream_generate_answer(
model,
tokenizer,
prompt,
device,
do_print=True,
max_new_tokens=args.max_new_tokens,
temperature=args.temperature,
repetition_penalty=args.repetition_penalty,
stop_str=stop_str,
)
if history:
history[-1][-1] = response.strip()
else:
print("Start inference.")
results = []
for index, example in enumerate(examples):
# Single turn inference
history = [[example, '']]
prompt = prompt_template.get_prompt(messages=history)
response = stream_generate_answer(
model,
tokenizer,
prompt,
device,
do_print=False,
max_new_tokens=args.max_new_tokens,
temperature=args.temperature,
repetition_penalty=args.repetition_penalty,
stop_str=stop_str,
)
response = response.strip()
print(f"======={index}=======")
print(f"Input: {example}\n")
print(f"Output: {response}\n")
results.append({"Input": prompt, "Output": response})
with open(args.predictions_file, 'w', encoding='utf-8') as f:
json.dump(results, f, ensure_ascii=False, indent=2)
if __name__ == '__main__':
main()
|