pi-tagger / scripts /wdtagger3-onnx.py
neggles's picture
add single file script
810354a
raw
history blame
15.8 kB
#!/usr/bin/env python3
import argparse
import logging
from dataclasses import dataclass
from os import PathLike
from pathlib import Path
from typing import Generator, Optional, Tuple
import numpy as np
import onnxruntime as rt
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import HfHubHTTPError
from pandas import DataFrame, read_csv
from PIL import Image
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
# allowed extensions
IMAGE_EXTENSIONS = [".jpg", ".jpeg", ".png", ".gif", ".webp", ".bmp", ".tiff", ".tif"]
# image input shape
IMAGE_SIZE = 448
MODEL_VARIANTS: dict[str, str] = {
"swinv2": "SmilingWolf/wd-swinv2-tagger-v3",
"convnext": "SmilingWolf/wd-convnext-tagger-v3",
"vit": "SmilingWolf/wd-vit-tagger-v3",
}
@dataclass
class LabelData:
names: list[str]
rating: list[np.int64]
general: list[np.int64]
character: list[np.int64]
@dataclass
class ImageLabels:
caption: str
booru: str
rating: str
general: dict[str, float]
character: dict[str, float]
ratings: dict[str, float]
logging.basicConfig(level=logging.WARNING, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")
logger = logging.getLogger()
logger.setLevel(logging.INFO)
## Model loading functions
def download_onnx(
repo_id: str,
filename: str = "model.onnx",
revision: Optional[str] = None,
token: Optional[str] = None,
) -> Path:
if not filename.endswith(".onnx"):
filename += ".onnx"
model_path = hf_hub_download(repo_id=repo_id, filename=filename, revision=revision, token=token)
return Path(model_path).resolve()
def create_session(
repo_id: str,
revision: Optional[str] = None,
token: Optional[str] = None,
) -> rt.InferenceSession:
model_path = download_onnx(repo_id, revision=revision, token=token)
if not model_path.is_file():
model_path = model_path.joinpath("model.onnx")
if not model_path.is_file():
raise FileNotFoundError(f"Model not found: {model_path}")
model = rt.InferenceSession(
str(model_path),
providers=[("CUDAExecutionProvider", {}), "CPUExecutionProvider"],
)
return model
## Label loading function
def load_labels_hf(
repo_id: str,
revision: Optional[str] = None,
token: Optional[str] = None,
) -> LabelData:
try:
csv_path = hf_hub_download(
repo_id=repo_id, filename="selected_tags.csv", revision=revision, token=token
)
csv_path = Path(csv_path).resolve()
except HfHubHTTPError as e:
raise FileNotFoundError(f"selected_tags.csv failed to download from {repo_id}") from e
df: DataFrame = read_csv(csv_path, usecols=["name", "category"])
tag_data = LabelData(
names=df["name"].tolist(),
rating=list(np.where(df["category"] == 9)[0]),
general=list(np.where(df["category"] == 0)[0]),
character=list(np.where(df["category"] == 4)[0]),
)
return tag_data
## Image preprocessing functions
def pil_ensure_rgb(image: Image.Image) -> Image.Image:
# convert to RGB/RGBA if not already (deals with palette images etc.)
if image.mode not in ["RGB", "RGBA"]:
image = image.convert("RGBA") if "transparency" in image.info else image.convert("RGB")
# convert RGBA to RGB with white background
if image.mode == "RGBA":
canvas = Image.new("RGBA", image.size, (255, 255, 255))
canvas.alpha_composite(image)
image = canvas.convert("RGB")
return image
def pil_pad_square(
image: Image.Image,
fill: tuple[int, int, int] = (255, 255, 255),
) -> Image.Image:
w, h = image.size
# get the largest dimension so we can pad to a square
px = max(image.size)
# pad to square with white background
canvas = Image.new("RGB", (px, px), fill)
canvas.paste(image, ((px - w) // 2, (px - h) // 2))
return canvas
def preprocess_image(
image: Image.Image,
size_px: int | tuple[int, int],
upscale: bool = True,
) -> Image.Image:
"""
Preprocess an image to be square and centered on a white background.
"""
if isinstance(size_px, int):
size_px = (size_px, size_px)
# ensure RGB and pad to square
image = pil_ensure_rgb(image)
image = pil_pad_square(image)
# resize to target size
if image.size[0] < size_px[0] or image.size[1] < size_px[1]:
if upscale is False:
raise ValueError("Image is smaller than target size, and upscaling is disabled")
image = image.resize(size_px, Image.LANCZOS)
if image.size[0] > size_px[0] or image.size[1] > size_px[1]:
image.thumbnail(size_px, Image.BICUBIC)
return image
## Dataset for DataLoader
class ImageDataset(Dataset):
def __init__(self, image_paths: list[Path], size_px: int = IMAGE_SIZE, upscale: bool = True):
self.size_px = size_px
self.upscale = upscale
self.images = [p for p in image_paths if p.suffix.lower() in IMAGE_EXTENSIONS]
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
image_path: Path = self.images[idx]
try:
image = Image.open(image_path)
image = preprocess_image(image, self.size_px, self.upscale)
# turn into BGR24 numpy array of N,H,W,C since thats what these want
image = image.convert("RGB").convert("BGR;24")
image = np.array(image).astype(np.float32)
except Exception as e:
logging.exception(f"Could not load image from {image_path}, error: {e}")
return None
return {"image": image, "path": np.array(str(image_path).encode("utf-8"), dtype=np.bytes_)}
def collate_fn_remove_corrupted(batch):
"""Collate function that allows to remove corrupted examples in the
dataloader. It expects that the dataloader returns 'None' when that occurs.
The 'None's in the batch are removed.
"""
# Filter out all the Nones (corrupted examples)
batch = [x for x in batch if x is not None]
if len(batch) == 0:
return None
return {k: np.array([x[k] for x in batch if x is not None]) for k in batch[0]}
## Main function
class ImageLabeler:
def __init__(
self,
repo_id: Optional[PathLike] = None,
general_threshold: float = 0.35,
character_threshold: float = 0.35,
banned_tags: list[str] = [],
):
self.repo_id = repo_id
# create some object attributes for convenience
self.general_threshold = general_threshold
self.character_threshold = character_threshold
self.banned_tags = banned_tags if banned_tags is not None else []
# actually load the model
logging.info(f"Loading model from path: {self.repo_id}")
self.model = create_session(self.repo_id)
# Get input dimensions
_, self.height, self.width, _ = self.model.get_inputs()[0].shape
logging.info(f"Model loaded, input dimensions {self.height}x{self.width}")
# load labels
self.labels = load_labels_hf(self.repo_id)
self.labels.general = [i for i in self.labels.general if i not in banned_tags]
self.labels.character = [i for i in self.labels.character if i not in banned_tags]
logging.info(f"Loaded labels from {self.repo_id}")
@property
def input_size(self) -> Tuple[int, int]:
return (self.height, self.width)
@property
def input_name(self) -> str:
return self.model.get_inputs()[0].name if self.model is not None else None
@property
def output_name(self) -> str:
return self.model.get_outputs()[0].name if self.model is not None else None
def label_images(self, images: np.ndarray) -> ImageLabels:
# Run the ONNX model
probs: np.ndarray = self.model.run([self.output_name], {self.input_name: images})[0]
# Convert to labels
results = []
for sample in list(probs):
labels = list(zip(self.labels.names, sample.astype(float)))
# First 4 labels are actually ratings: pick one with argmax
rating_labels = dict([labels[i] for i in self.labels.rating])
rating = max(rating_labels, key=rating_labels.get)
# General labels, pick any where prediction confidence > threshold
gen_labels = [labels[i] for i in self.labels.general]
gen_labels = dict([x for x in gen_labels if x[1] > self.general_threshold])
gen_labels = dict(sorted(gen_labels.items(), key=lambda item: item[1], reverse=True))
# Character labels, pick any where prediction confidence > threshold
char_labels = [labels[i] for i in self.labels.character]
char_labels = dict([x for x in char_labels if x[1] > self.character_threshold])
char_labels = dict(sorted(char_labels.items(), key=lambda item: item[1], reverse=True))
# Combine general and character labels, sort by confidence
combined_names = [x for x in gen_labels]
combined_names.extend([x for x in char_labels])
# Convert to a string suitable for use as a training caption
caption = ", ".join(combined_names)
booru = caption.replace("_", " ").replace("(", "\(").replace(")", "\)")
# return output
results.append(
ImageLabels(
caption=caption,
booru=booru,
rating=rating,
general=gen_labels,
character=char_labels,
ratings=rating_labels,
)
)
return results
def __call__(self, images: list[Image.Image]) -> Generator[ImageLabels, None, None]:
for x in images:
yield self.label_images(x)
def main(args):
images_dir: Path = Path(args.images_dir).resolve()
if not images_dir.is_dir():
raise FileNotFoundError(f"Directory not found: {images_dir}")
variant: str = args.variant
recursive: bool = args.recursive or False
banned_tags: set[str] = set(args.banned_tags.split(","))
caption_extension: str = str(args.caption_extension).lower()
print_freqs: bool = args.print_freqs or False
num_workers: int = args.num_workers
batch_size: int = args.batch_size
remove_underscore: bool = args.remove_underscore or False
general_threshold: float = args.general_threshold or args.thresh
character_threshold: float = args.character_threshold or args.thresh
debug: bool = args.debug or False
# turn base model into a repo id and model path
repo_id: str = MODEL_VARIANTS.get(variant, None)
if repo_id is None:
raise ValueError(f"Unknown base model '{variant}'")
# instantiate the dataset
print(f"Loading images from {images_dir}...", end=" ")
if recursive is True:
image_paths = [p for p in images_dir.rglob("**/*") if p.suffix.lower() in IMAGE_EXTENSIONS]
else:
image_paths = [p for p in images_dir.glob("*") if p.suffix.lower() in IMAGE_EXTENSIONS]
n_images = len(image_paths)
print(f"found {n_images} images to process, creating DataLoader...")
# sort by filename if we have a small number of images
if n_images < 10000:
image_paths = sorted(image_paths, key=lambda x: x.stem)
dataset = ImageDataset(image_paths)
# Create the data loader
dataloader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
collate_fn=collate_fn_remove_corrupted,
drop_last=False,
prefetch_factor=3,
)
# Create the image labeler
labeler: ImageLabeler = ImageLabeler(
repo_id=repo_id,
character_threshold=character_threshold,
general_threshold=general_threshold,
banned_tags=banned_tags,
)
# object to save tag frequencies
tag_freqs = {}
# iterate
for batch in tqdm(dataloader, ncols=100, unit="image", unit_scale=batch_size):
images = batch["image"]
paths = batch["path"]
# label the images
batch_labels = labeler.label_images(images)
# save the labels
for image_labels, image_path in zip(batch_labels, paths):
if isinstance(image_path, (np.bytes_, bytes)):
image_path = Path(image_path.decode("utf-8"))
# save the labels
caption = image_labels.caption
if remove_underscore is True:
caption = caption.replace("_", " ")
Path(image_path).with_suffix(caption_extension).write_text(caption + "\n", encoding="utf-8")
# save the tag frequencies
if print_freqs is True:
for tag in caption.split(", "):
if tag in banned_tags:
continue
if tag not in tag_freqs:
tag_freqs[tag] = 0
tag_freqs[tag] += 1
# debug
if debug is True:
print(
f"{image_path}:"
+ f"\n Character tags: {image_labels.character}"
+ f"\n General tags: {image_labels.general}"
)
if print_freqs:
sorted_tags = sorted(tag_freqs.items(), key=lambda x: x[1], reverse=True)
print("\nTag frequencies:")
for tag, freq in sorted_tags:
print(f"{tag}: {freq}")
print("done!")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"images_dir",
type=str,
help="directory to tag image files in",
)
parser.add_argument(
"--variant",
type=str,
default="swinv2",
help="name of base model to use (one of 'swinv2', 'convnext', 'vit')",
)
parser.add_argument(
"--num_workers",
type=int,
default=4,
help="number of threads to use in Torch DataLoader (4 should be plenty)",
)
parser.add_argument(
"--batch_size",
type=int,
default=1,
help="batch size for Torch DataLoader (use 1 for cpu, 4-32 for gpu)",
)
parser.add_argument(
"--caption_extension",
type=str,
default=".txt",
help="extension of caption files to write (e.g. '.txt', '.caption')",
)
parser.add_argument(
"--thresh",
type=float,
default=0.35,
help="confidence threshold for adding tags",
)
parser.add_argument(
"--general_threshold",
type=float,
default=None,
help="confidence threshold for general tags - defaults to --thresh",
)
parser.add_argument(
"--character_threshold",
type=float,
default=None,
help="confidence threshold for character tags - defaults to --thresh",
)
parser.add_argument(
"--recursive",
action="store_true",
help="whether to recurse into subdirectories of images_dir",
)
parser.add_argument(
"--remove_underscore",
action="store_true",
help="whether to remove underscores from tags (e.g. 'long_hair' -> 'long hair')",
)
parser.add_argument(
"--debug",
action="store_true",
help="enable debug logging mode",
)
parser.add_argument(
"--banned_tags",
type=str,
default="",
help="tags to filter out (comma-separated)",
)
parser.add_argument(
"--print_freqs",
action="store_true",
help="Print overall tag frequencies at the end",
)
args = parser.parse_args()
if args.images_dir is None:
args.images_dir = Path.cwd().joinpath("temp/test")
main(args)