""" Copyright (c) 2024-present Naver Cloud Corp. This source code is based on code from the Segment Anything Model (SAM) (https://github.com/facebookresearch/segment-anything). This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ import numpy as np import torch import cv2 import math from copy import deepcopy from itertools import product from typing import Any, Dict, Generator, ItemsView, List, Tuple class MaskData: """ A structure for storing masks and their related data in batched format. Implements basic filtering and concatenation. """ def __init__(self, **kwargs) -> None: for v in kwargs.values(): assert isinstance( v, (list, np.ndarray, torch.Tensor) ), "MaskData only supports list, numpy arrays, and torch tensors." self._stats = dict(**kwargs) def __setitem__(self, key: str, item: Any) -> None: assert isinstance( item, (list, np.ndarray, torch.Tensor) ), "MaskData only supports list, numpy arrays, and torch tensors." self._stats[key] = item def __delitem__(self, key: str) -> None: del self._stats[key] def __getitem__(self, key: str) -> Any: return self._stats[key] def items(self) -> ItemsView[str, Any]: return self._stats.items() def filter(self, keep: torch.Tensor) -> None: for k, v in self._stats.items(): if v is None: self._stats[k] = None elif isinstance(v, torch.Tensor): self._stats[k] = v[torch.as_tensor(keep, device=v.device)] elif isinstance(v, np.ndarray): self._stats[k] = v[keep.detach().cpu().numpy()] elif isinstance(v, list) and keep.dtype == torch.bool: self._stats[k] = [a for i, a in enumerate(v) if keep[i]] elif isinstance(v, list): self._stats[k] = [v[i] for i in keep] else: raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.") def cat(self, new_stats: "MaskData") -> None: for k, v in new_stats.items(): if k not in self._stats or self._stats[k] is None: self._stats[k] = deepcopy(v) elif isinstance(v, torch.Tensor): self._stats[k] = torch.cat([self._stats[k], v], dim=0) elif isinstance(v, np.ndarray): self._stats[k] = np.concatenate([self._stats[k], v], axis=0) elif isinstance(v, list): self._stats[k] = self._stats[k] + deepcopy(v) else: raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.") def to_numpy(self) -> None: for k, v in self._stats.items(): if isinstance(v, torch.Tensor): self._stats[k] = v.detach().cpu().numpy() def is_box_near_crop_edge( boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0 ) -> torch.Tensor: """Filter masks at the edge of a crop, but not at the edge of the original image.""" crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device) orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device) boxes = uncrop_boxes_xyxy(boxes, crop_box).float() near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0) near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0) near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge) return torch.any(near_crop_edge, dim=1) def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor: box_xywh = deepcopy(box_xyxy) box_xywh[2] = box_xywh[2] - box_xywh[0] box_xywh[3] = box_xywh[3] - box_xywh[1] return box_xywh def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]: assert len(args) > 0 and all( len(a) == len(args[0]) for a in args ), "Batched iteration must have inputs of all the same size." n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0) for b in range(n_batches): yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args] def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]: """ Encodes masks to an uncompressed RLE, in the format expected by pycoco tools. """ # Put in fortran order and flatten h,w b, h, w = tensor.shape tensor = tensor.permute(0, 2, 1).flatten(1) # Compute change indices diff = tensor[:, 1:] ^ tensor[:, :-1] change_indices = diff.nonzero() # Encode run length out = [] for i in range(b): cur_idxs = change_indices[change_indices[:, 0] == i, 1] cur_idxs = torch.cat( [ torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device), cur_idxs + 1, torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device), ] ) btw_idxs = cur_idxs[1:] - cur_idxs[:-1] counts = [] if tensor[i, 0] == 0 else [0] counts.extend(btw_idxs.detach().cpu().tolist()) out.append({"size": [h, w], "counts": counts}) return out def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray: """Compute a binary mask from an uncompressed RLE.""" h, w = rle["size"] mask = np.empty(h * w, dtype=bool) idx = 0 parity = False for count in rle["counts"]: mask[idx : idx + count] = parity idx += count parity ^= True mask = mask.reshape(w, h) return mask.transpose() # Put in C order def area_from_rle(rle: Dict[str, Any]) -> int: return sum(rle["counts"][1::2]) def calculate_stability_score( masks: torch.Tensor, mask_threshold: float, threshold_offset: float ) -> torch.Tensor: """ Computes the stability score for a batch of masks. The stability score is the IoU between the binary masks obtained by thresholding the predicted mask logits at high and low values. """ # One mask is always contained inside the other. # Save memory by preventing unnecessary cast to torch.int64 intersections = ( (masks > (mask_threshold + threshold_offset)) .sum(-1, dtype=torch.int16) .sum(-1, dtype=torch.int32) ) unions = ( (masks > (mask_threshold - threshold_offset)) .sum(-1, dtype=torch.int16) .sum(-1, dtype=torch.int32) ) return intersections / unions def build_point_grid(n_per_side: int) -> np.ndarray: """Generates a 2D grid of points evenly spaced in [0,1]x[0,1].""" offset = 1 / (2 * n_per_side) points_one_side = np.linspace(offset, 1 - offset, n_per_side) points_x = np.tile(points_one_side[None, :], (n_per_side, 1)) points_y = np.tile(points_one_side[:, None], (1, n_per_side)) points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2) return points def build_all_layer_point_grids( n_per_side: int, n_layers: int, scale_per_layer: int ) -> List[np.ndarray]: """Generates point grids for all crop layers.""" points_by_layer = [] for i in range(n_layers + 1): n_points = int(n_per_side / (scale_per_layer**i)) points_by_layer.append(build_point_grid(n_points)) return points_by_layer def generate_crop_boxes( im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float ) -> Tuple[List[List[int]], List[int]]: """ Generates a list of crop boxes of different sizes. Each layer has (2**i)**2 boxes for the ith layer. """ crop_boxes, layer_idxs = [], [] im_h, im_w = im_size short_side = min(im_h, im_w) # Original image crop_boxes.append([0, 0, im_w, im_h]) layer_idxs.append(0) def crop_len(orig_len, n_crops, overlap): return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops)) for i_layer in range(n_layers): n_crops_per_side = 2 ** (i_layer + 1) overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side)) crop_w = crop_len(im_w, n_crops_per_side, overlap) crop_h = crop_len(im_h, n_crops_per_side, overlap) crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)] crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)] # Crops in XYWH format for x0, y0 in product(crop_box_x0, crop_box_y0): box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)] crop_boxes.append(box) layer_idxs.append(i_layer + 1) return crop_boxes, layer_idxs def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor: x0, y0, _, _ = crop_box offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device) # Check if boxes has a channel dimension if len(boxes.shape) == 3: offset = offset.unsqueeze(1) return boxes + offset def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor: x0, y0, _, _ = crop_box offset = torch.tensor([[x0, y0]], device=points.device) # Check if points has a channel dimension if len(points.shape) == 3: offset = offset.unsqueeze(1) return points + offset def uncrop_masks( masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int ) -> torch.Tensor: x0, y0, x1, y1 = crop_box if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h: return masks # Coordinate transform masks pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0) pad = (x0, pad_x - x0, y0, pad_y - y0) return torch.nn.functional.pad(masks, pad, value=0) def remove_small_regions( mask: np.ndarray, area_thresh: float, mode: str ) -> Tuple[np.ndarray, bool]: """ Removes small disconnected regions and holes in a mask. Returns the mask and an indicator of if the mask has been modified. """ import cv2 # type: ignore assert mode in ["holes", "islands"] correct_holes = mode == "holes" working_mask = (correct_holes ^ mask).astype(np.uint8) n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8) sizes = stats[:, -1][1:] # Row 0 is background label small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh] if len(small_regions) == 0: return mask, False fill_labels = [0] + small_regions if not correct_holes: fill_labels = [i for i in range(n_labels) if i not in fill_labels] # If every region is below threshold, keep largest if len(fill_labels) == 0: fill_labels = [int(np.argmax(sizes)) + 1] mask = np.isin(regions, fill_labels) return mask, True def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]: from pycocotools import mask as mask_utils # type: ignore h, w = uncompressed_rle["size"] rle = mask_utils.frPyObjects(uncompressed_rle, h, w) rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json return rle def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor: """ Calculates boxes in XYXY format around masks. Return [0,0,0,0] for an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4. """ # torch.max below raises an error on empty inputs, just skip in this case if torch.numel(masks) == 0: return torch.zeros(*masks.shape[:-2], 4, device=masks.device) # Normalize shape to CxHxW shape = masks.shape h, w = shape[-2:] if len(shape) > 2: masks = masks.flatten(0, -3) else: masks = masks.unsqueeze(0) # Get top and bottom edges in_height, _ = torch.max(masks, dim=-1) in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :] bottom_edges, _ = torch.max(in_height_coords, dim=-1) in_height_coords = in_height_coords + h * (~in_height) top_edges, _ = torch.min(in_height_coords, dim=-1) # Get left and right edges in_width, _ = torch.max(masks, dim=-2) in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :] right_edges, _ = torch.max(in_width_coords, dim=-1) in_width_coords = in_width_coords + w * (~in_width) left_edges, _ = torch.min(in_width_coords, dim=-1) # If the mask is empty the right edge will be to the left of the left edge. # Replace these boxes with [0, 0, 0, 0] empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges) out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1) out = out * (~empty_filter).unsqueeze(-1) # Return to original shape if len(shape) > 2: out = out.reshape(*shape[:-2], 4) else: out = out[0] return out def show_mat_anns(image, anns): if len(anns) == 0: return np.zeros_like(image) + 128 sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True) image = image.astype(np.float32) colorized_mat = np.zeros_like(image) for ann in sorted_anns: color = (np.random.random(3) * 255).astype(np.float32) if 'logit' in ann: mat = ann['logit'].astype(np.float32) / 255. else: mat = ann['segmentation'].astype(np.float32) color_mat = np.zeros_like(image) + color[None, None] colorized_mat = color_mat * mat[:, :, None] + colorized_mat * (1. - mat[:, :, None]) colorized_mat = np.uint8(colorized_mat) return colorized_mat