Beom0's picture
Update app.py (get weights using hf_hub_download)
33dba5a verified
"""
Copyright (c) 2024-present Naver Cloud Corp.
This source code is based on code from the Segment Anything Model (SAM)
(https://github.com/facebookresearch/segment-anything).
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import os, sys
sys.path.append(os.getcwd())
import os
import torch
import gradio as gr
from gradio_image_prompter import ImagePrompter
import numpy as np
import cv2
from zim import zim_model_registry, ZimPredictor, ZimAutomaticMaskGenerator
from zim.utils import show_mat_anns
from huggingface_hub import hf_hub_download
def get_shortest_axis(image):
h, w, _ = image.shape
return h if h < w else w
def reset_image(image, prompts):
if image is None:
image = np.zeros((1024, 1024, 3), dtype=np.uint8)
else:
image = image['image']
predictor.set_image(image)
prompts = dict()
black = np.zeros(image.shape[:2], dtype=np.uint8)
return (image, image, image, black, black, prompts)
def reset_example_image(image, prompts):
if image is None:
image = np.zeros((1024, 1024, 3), dtype=np.uint8)
predictor.set_image(image)
prompts = dict()
black = np.zeros(image.shape[:2], dtype=np.uint8)
image_dict = {}
image_dict['image'] = image
image_dict['prompts'] = prompts
return (image, image_dict, image, image, black, black, prompts)
def run_amg(image):
gr.Info('Checkout ZIM Auto Mask tab.', duration=3)
masks = mask_generator.generate(image)
masks_vis = show_mat_anns(image, masks)
return masks_vis
def run_model(image, prompts):
if not prompts:
raise gr.Error(f'Please input any point or BBox', duration=3)
gr.Info('Checkout ZIM Mask tab.', duration=3)
point_coords = None
point_labels = None
boxes = None
zim_mask = None
if "point" in prompts:
point_coords, point_labels = [], []
for type, pts in prompts["point"]:
point_coords.append(pts)
point_labels.append(type)
point_coords = np.array(point_coords)
point_labels = np.array(point_labels)
if "bbox" in prompts:
boxes = prompts['bbox']
boxes = np.array(boxes)
if "scribble" in prompts:
point_coords, point_labels = [], []
for pts in prompts["scribble"]:
point_coords.append(np.flip(pts))
point_labels.append(1)
if len(point_coords) == 0:
raise gr.Error("Please input any scribbles.", duration=3)
point_coords = np.array(point_coords)
point_labels = np.array(point_labels)
zim_mask, _, _ = predictor.predict(
point_coords=point_coords,
point_labels=point_labels,
box=boxes,
multimask_output=False,
)
zim_mask = np.squeeze(zim_mask, axis=0)
zim_mask = np.uint8(zim_mask * 255)
return zim_mask
def reset_scribble(image, scribble, prompts):
# scribble = dict()
for k in prompts.keys():
prompts[k] = []
for k, v in scribble.items():
scribble[k] = None
zim_mask = np.zeros_like(image)
return scribble, zim_mask
def update_scribble(image, scribble, prompts):
if "point" in prompts:
del prompts["point"]
if "bbox" in prompts:
del prompts["bbox"]
prompts = dict() # reset prompt
scribble_mask = scribble["layers"][0][..., -1] > 0
scribble_coords = np.argwhere(scribble_mask)
n_points = min(len(scribble_coords), 24)
indices = np.linspace(0, len(scribble_coords)-1, n_points, dtype=int)
scribble_sampled = scribble_coords[indices]
prompts["scribble"] = scribble_sampled
zim_mask = run_model(image, prompts)
return zim_mask, prompts
def draw_point(img, pt, size, color):
# draw circle with white boundary region
cv2.circle(img, (int(pt[0]), int(pt[1])), int(size * 1.3), (255, 255, 255), -1)
cv2.circle(img, (int(pt[0]), int(pt[1])), int(size * 0.9), color, -1)
def draw_images(image, mask, prompts):
if len(prompts) == 0 or mask.shape[1] == 1:
return image, image, image
minor = get_shortest_axis(image)
size = int(minor / 80)
image = np.float32(image)
def blending(image, mask):
mask = np.float32(mask) / 255
blended_image = np.zeros_like(image, dtype=np.float32)
blended_image[:, :, :] = [108, 0, 192]
blended_image = (image * 0.5) + (blended_image * 0.5)
img_with_mask = mask[:, :, None] * blended_image + (1 - mask[:, :, None]) * image
img_with_mask = np.uint8(img_with_mask)
return img_with_mask
img_with_mask = blending(image, mask)
img_with_point = img_with_mask.copy()
if "point" in prompts:
for type, pts in prompts["point"]:
if type == "Positive":
color = (0, 0, 255)
draw_point(img_with_point, pts, size, color)
elif type == "Negative":
color = (255, 0, 0)
draw_point(img_with_point, pts, size, color)
size = int(minor / 200)
return (
img,
img_with_mask,
)
def get_point_or_box_prompts(img, prompts):
image, img_prompts = img['image'], img['points']
point_prompts = []
box_prompts = []
for prompt in img_prompts:
for p in range(len(prompt)):
prompt[p] = int(prompt[p])
if prompt[2] == 2 and prompt[5] == 3: # box prompt
box_prompts = [[prompt[0], prompt[1], prompt[3], prompt[4]], ]
elif prompt[2] == 1 and prompt[5] == 4: # Positive point prompt
point_prompts.append((1, (prompt[0], prompt[1])))
elif prompt[2] == 0 and prompt[5] == 4: # Negative point prompt
point_prompts.append((0, (prompt[0], prompt[1])))
if "scribble" in prompts:
del prompts["scribble"]
if len(point_prompts) > 0:
prompts['point'] = point_prompts
elif 'point' in prompts:
del prompts['point']
if len(box_prompts) > 0:
prompts['bbox'] = box_prompts
elif 'bbox' in prompts:
del prompts['bbox']
zim_mask = run_model(image, prompts)
return image, zim_mask, prompts
def get_examples():
assets_dir = os.path.join(os.path.dirname(__file__), 'examples')
images = os.listdir(assets_dir)
return [os.path.join(assets_dir, img) for img in images]
def download_onnx_weights(repo_id="naver-iv/zim-anything-vitl", file_dir="zim_vit_l_2092"):
hf_hub_download(repo_id=repo_id, filename=f"{file_dir}/encoder.onnx")
filepath = hf_hub_download(repo_id=repo_id, filename=f"{file_dir}/decoder.onnx")
return os.path.dirname(filepath)
if __name__ == "__main__":
backbone = "vit_l"
model = zim_model_registry[backbone](checkpoint=download_onnx_weights())
if torch.cuda.is_available():
model.cuda()
predictor = ZimPredictor(model)
mask_generator = ZimAutomaticMaskGenerator(
model,
pred_iou_thresh=0.7,
points_per_batch=8,
stability_score_thresh=0.9,
)
with gr.Blocks() as demo:
gr.Markdown("# <center> [Demo] ZIM: Zero-Shot Image Matting for Anything")
prompts = gr.State(dict())
img = gr.Image(visible=False)
example_image = gr.Image(visible=False)
with gr.Row():
with gr.Column():
# Point and Bbox prompt
with gr.Tab(label="Point or Box"):
img_with_point_or_box = ImagePrompter(
label="query image",
sources="upload"
)
interactions = "Left Click (Pos) | Middle/Right Click (Neg) | Press Move (Box)"
gr.Markdown("<h3 style='text-align: center'> {} </h3>".format(interactions))
run_bttn = gr.Button("Run")
amg_bttn = gr.Button("Automatic Mask Generation")
# Scribble prompt
with gr.Tab(label="Scribble"):
img_with_scribble = gr.ImageEditor(
label="Scribble",
brush=gr.Brush(colors=["#00FF00"], default_size=15),
sources="upload",
transforms=None,
layers=False
)
interactions = "Press Move (Scribble)"
gr.Markdown("<h3 style='text-align: center'> Step 1. Select Draw button </h3>")
gr.Markdown("<h3 style='text-align: center'> Step 2. {} </h3>".format(interactions))
scribble_bttn = gr.Button("Run")
scribble_reset_bttn = gr.Button("Reset Scribbles")
amg_scribble_bttn = gr.Button("Automatic Mask Generation")
# Example image
gr.Examples(get_examples(), inputs=[example_image])
# with gr.Row():
with gr.Column():
with gr.Tab(label="ZIM Image"):
img_with_zim_mask = gr.Image(
label="ZIM Image",
interactive=False
)
with gr.Tab(label="ZIM Mask"):
zim_mask = gr.Image(
label="ZIM Mask",
image_mode="L",
interactive=False
)
with gr.Tab(label="ZIM Auto Mask"):
zim_amg = gr.Image(
label="ZIM Auto Mask",
interactive=False
)
example_image.change(
reset_example_image,
[example_image, prompts],
[
img,
img_with_point_or_box,
img_with_scribble,
img_with_zim_mask,
zim_amg,
zim_mask,
prompts,
]
)
img_with_point_or_box.upload(
reset_image,
[img_with_point_or_box, prompts],
[
img,
img_with_scribble,
img_with_zim_mask,
zim_amg,
zim_mask,
prompts,
],
)
amg_bttn.click(
run_amg,
[img],
[zim_amg]
)
amg_scribble_bttn.click(
run_amg,
[img],
[zim_amg]
)
run_bttn.click(
get_point_or_box_prompts,
[img_with_point_or_box, prompts],
[img, zim_mask, prompts]
)
zim_mask.change(
draw_images,
[img, zim_mask, prompts],
[
img, img_with_zim_mask,
],
)
scribble_reset_bttn.click(
reset_scribble,
[img, img_with_scribble, prompts],
[img_with_scribble, zim_mask],
)
scribble_bttn.click(
update_scribble,
[img, img_with_scribble, prompts],
[zim_mask, prompts],
)
demo.queue()
demo.launch()