abhishekdileep
testing done on app.py and model.py
8bfdeed
raw
history blame
1.74 kB
from search import SemanticSearch, GoogleSearch, Document
import streamlit as st
from model import RAGModel, load_configs
def run_on_start():
if "configs" not in st.session_state:
st.session_state.configs = configs = load_configs(config_file="rag.configs.yml")
if "model" not in st.session_state:
st.session_state.model = RAGModel(configs)
run_on_start()
def search(query):
g = GoogleSearch(query)
data = g.all_page_data
d = Document(data, min_char_len=st.session_state.configs["document"]["min_char_length"])
st.session_state.doc = d.doc()
st.title("LLeUUNDd Google search")
if "messages" not in st.session_state:
st.session_state.messages = []
if "doc" not in st.session_state:
st.session_state.doc = None
if "refresh" not in st.session_state:
st.session_state.refresh = True
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("Search Here insetad of Google"):
st.chat_message("user").markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
if st.session_state.refresh:
st.session_state.refresh = False
search(prompt)
s = SemanticSearch(
st.session_state.doc,
st.session_state.configs["model"]["embeding_model"],
st.session_state.configs["model"]["device"],
)
topk, u = s.semantic_search(query=prompt, k=32)
output = st.session_state.model.answer_query(query=prompt, topk_items=topk)
response = output
with st.chat_message("assistant"):
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})