mindseye-lite / app.py
apolinario's picture
Attempt to add vqgan and diffusion
0098e32
raw
history blame
7.36 kB
import gradio as gr
import random
import os
import io, base64
from PIL import Image
import numpy
import shortuuid
latent = gr.Interface.load("spaces/multimodalart/latentdiffusion")
rudalle = gr.Interface.load("spaces/multimodalart/rudalle")
diffusion = gr.Interface.load("spaces/multimodalart/diffusion")
print(diffusion)
vqgan = gr.Interface.load("spaces/multimodalart/vqgan")
def text2image_latent(text,steps,width,height,images,diversity):
results = latent(text, steps, width, height, images, diversity)
image_paths = []
image_arrays = []
for image in results[1]:
image_str = image[0]
image_str = image_str.replace("data:image/png;base64,","")
decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8"))
img = Image.open(io.BytesIO(decoded_bytes))
#image_arrays.append(numpy.asarray(img))
url = shortuuid.uuid()
temp_dir = './tmp'
if not os.path.exists(temp_dir):
os.makedirs(temp_dir, exist_ok=True)
image_path = f'{temp_dir}/{url}.png'
img.save(f'{temp_dir}/{url}.png')
image_paths.append(image_path)
return(results[0],image_paths)
def text2image_rudalle(text,aspect,model):
image = rudalle(text,aspect,model)[0]
return(image)
def text2image_vqgan(text,width,height,style,steps,flavor):
results = vqgan(text,width,height,style,steps,flavor)
return(results)
def text2image_diffusion(steps_diff, images_diff, weight, clip):
results = diffusion(steps_diff, images_diff, weight, clip)
print(results)
return(results)
css_mt = {"margin-top": "1em"}
empty = gr.outputs.HTML()
with gr.Blocks() as mindseye:
gr.Markdown("<h1>MindsEye Lite <small><small>run multiple text-to-image models in one place</small></small></h1><p>MindsEye Lite orchestrates multiple text-to-image Hugging Face Spaces in one convenient space, so you can try different models. This work carries the spirit of <a href='https://multimodal.art/mindseye' target='_blank'>MindsEye Beta</a>, a tool to run multiple models with a single UI, but adjusted to the current hardware limitations of Spaces. MindsEye Lite was created by <a style='color: rgb(99, 102, 241);font-weight:bold' href='https://twitter.com/multimodalart' target='_blank'>@multimodalart</a>, keep up with the <a style='color: rgb(99, 102, 241);' href='https://multimodal.art/news' target='_blank'>latest multimodal ai art news here</a> and consider <a style='color: rgb(99, 102, 241);' href='https://www.patreon.com/multimodalart' target='_blank'>supporting us on Patreon</a></div></p>")
gr.Markdown("<style>.mx-auto.container .gr-form-gap {flex-direction: row; gap: calc(1rem * calc(1 - var(--tw-space-y-reverse)));} .mx-auto.container .gr-form-gap .flex-col, .mx-auto.container .gr-form-gap .gr-box{width: 100%}</style>")
text = gr.inputs.Textbox(placeholder="Try writing something..", label="Prompt")
with gr.Column():
with gr.Row():
with gr.Tabs():
with gr.TabItem("Latent Diffusion"):
gr.Markdown("Latent Diffusion is the state of the art of open source text-to-image models, superb in text synthesis. Sometimes struggles with complex prompts")
steps = gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate",default=45,maximum=50,minimum=1,step=1)
width = gr.inputs.Slider(label="Width", default=256, step=32, maximum=256, minimum=32)
height = gr.inputs.Slider(label="Height", default=256, step=32, maximum = 256, minimum=32)
images = gr.inputs.Slider(label="Images - How many images you wish to generate", default=2, step=1, minimum=1, maximum=4)
diversity = gr.inputs.Slider(label="Diversity scale - How different from one another you wish the images to be",default=5.0, minimum=1.0, maximum=15.0)
get_image_latent = gr.Button("Generate Image",css=css_mt)
with gr.TabItem("ruDALLE"):
gr.Markdown("ruDALLE is a replication of DALL-E 1 in the russian language. No worries, your prompts will be translated automatically to russian. In case you see an error, try again a few times")
aspect = gr.inputs.Radio(label="Aspect Ratio", choices=["Square", "Horizontal", "Vertical"],default="Square")
model = gr.inputs.Dropdown(label="Model", choices=["Surrealism","Realism", "Emoji"], default="Surrealism")
get_image_rudalle = gr.Button("Generate Image",css=css_mt)
with gr.TabItem("VQGAN+CLIP"):
gr.Markdown("VQGAN+CLIP is the most famous text-to-image generator. Can produce good artistic results")
width_vq = gr.inputs.Slider(label="Width", default=256, minimum=32, step=32, maximum=512)
height_vq= gr.inputs.Slider(label="Height", default=256, minimum=32, step=32, maximum=512)
style = gr.inputs.Dropdown(label="Style - Hyper Fast Results is fast but compromises a bit of the quality",choices=["Default","Balanced","Detailed","Consistent Creativity","Realistic","Smooth","Subtle MSE","Hyper Fast Results"],default="Hyper Fast Results")
steps = gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate. All styles that are not Hyper Fast need at least 200 steps",default=50,maximum=300,minimum=1,step=1)
flavor = gr.inputs.Dropdown(label="Flavor - pick a flavor for the style of the images, based on the images below",choices=["ginger", "cumin", "holywater", "zynth", "wyvern", "aaron", "moth", "juu"])
get_image_vqgan = gr.button("Generate Image",css=css_mt)
with gr.TabItem("Guided Diffusion"):
gr.Markdown("Guided Diffusion models produce superb quality results. V-Diffusion is its latest implementation")
steps_diff = gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate",default=40,maximum=80,minimum=1,step=1)
images_diff = gr.inputs.Slider(label="Number of images in parallel", default=2, maximum=4, minimum=1, step=1)
weight = gr.inputs.Slider(label="Weight - how closely the image should resemble the prompt", default=5, maximum=15, minimum=0, step=1)
clip = gr.inputs.Checkbox(label="CLIP Guided - improves coherence with complex prompts, makes it slower")
get_image_diffusion = gr.button("Generate Image",css=css_mt)
with gr.Row():
with gr.Tabs():
with gr.TabItem("Image output"):
image = gr.outputs.Image()
with gr.TabItem("Gallery output"):
gallery = gr.Gallery(label="Individual images")
get_image_latent.click(text2image_latent, inputs=[text,steps,width,height,images,diversity], outputs=[image,gallery])
get_image_rudalle.click(text2image_rudalle, inputs=[text,aspect,model], outputs=image)
get_image_vqgan.click(text2image_vqgan, inputs=[text,width_vq,height_vq,style,steps,flavor],outputs=image)
get_image_diffusion.click(text2image_diffusion, inputs=[steps_diff, images_diff, weight, clip],outputs=gallery)
mindseye.launch()