multimodalart HF staff commited on
Commit
0cdae11
·
verified ·
1 Parent(s): 148a9dd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -346,7 +346,7 @@ numpy==1.26.4'''
346
  # The subprocess call for autotrain spacerunner
347
  api = HfApi(token=token)
348
  username = api.whoami()["name"]
349
- subprocess_command = ["autotrain", "spacerunner", "--project-name", slugged_lora_name, "--script-path", spacerunner_folder, "--username", username, "--token", token, "--backend", "spaces-a10g-small", "--env",f"HF_TOKEN={token};HF_HUB_ENABLE_HF_TRANSFER=1", "--args", spacerunner_args]
350
  outcome = subprocess.run(subprocess_command)
351
  if(outcome.returncode == 0):
352
  return f"""# Your training has started.
@@ -358,13 +358,13 @@ numpy==1.26.4'''
358
 
359
  def calculate_price(iterations, with_prior_preservation):
360
  if(with_prior_preservation):
361
- seconds_per_iteration = 3.50
362
  else:
363
- seconds_per_iteration = 2.00
364
  total_seconds = (iterations * seconds_per_iteration) + 210
365
- cost_per_second = 1.05/60/60
366
  cost = round(cost_per_second * total_seconds, 2)
367
- return f'''To train this LoRA, we will duplicate the space and hook an A10G GPU under the hood.
368
  ## Estimated to cost <b>< US$ {str(cost)}</b> for {round(int(total_seconds)/60, 2)} minutes with your current train settings <small>({int(iterations)} iterations at {seconds_per_iteration}s/it)</small>
369
  #### ↓ to continue, grab you <b>write</b> token [here](https://huggingface.co/settings/tokens) and enter it below ↓'''
370
 
 
346
  # The subprocess call for autotrain spacerunner
347
  api = HfApi(token=token)
348
  username = api.whoami()["name"]
349
+ subprocess_command = ["autotrain", "spacerunner", "--project-name", slugged_lora_name, "--script-path", spacerunner_folder, "--username", username, "--token", token, "--backend", "spaces-l40sx1", "--env",f"HF_TOKEN={token};HF_HUB_ENABLE_HF_TRANSFER=1", "--args", spacerunner_args]
350
  outcome = subprocess.run(subprocess_command)
351
  if(outcome.returncode == 0):
352
  return f"""# Your training has started.
 
358
 
359
  def calculate_price(iterations, with_prior_preservation):
360
  if(with_prior_preservation):
361
+ seconds_per_iteration = 1.48
362
  else:
363
+ seconds_per_iteration = 1.25
364
  total_seconds = (iterations * seconds_per_iteration) + 210
365
+ cost_per_second = 1.80/60/60
366
  cost = round(cost_per_second * total_seconds, 2)
367
+ return f'''To train this LoRA, we will duplicate the space and hook an L40S GPU under the hood.
368
  ## Estimated to cost <b>< US$ {str(cost)}</b> for {round(int(total_seconds)/60, 2)} minutes with your current train settings <small>({int(iterations)} iterations at {seconds_per_iteration}s/it)</small>
369
  #### ↓ to continue, grab you <b>write</b> token [here](https://huggingface.co/settings/tokens) and enter it below ↓'''
370