multimodalart HF staff commited on
Commit
34fa983
·
verified ·
1 Parent(s): d94e0e1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -17
app.py CHANGED
@@ -11,20 +11,6 @@ from PIL import Image
11
  edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
12
  normal_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl.safetensors")
13
 
14
- def set_timesteps_patched(self, num_inference_steps: int, device = None):
15
- self.num_inference_steps = num_inference_steps
16
-
17
- ramp = np.linspace(0, 1, self.num_inference_steps)
18
- sigmas = torch.linspace(math.log(self.config.sigma_min), math.log(self.config.sigma_max), len(ramp)).exp().flip(0)
19
-
20
- sigmas = (sigmas).to(dtype=torch.float32, device=device)
21
- self.timesteps = self.precondition_noise(sigmas)
22
-
23
- self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
24
- self._step_index = None
25
- self._begin_index = None
26
- self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
27
-
28
  def resize_image(image, resolution):
29
  original_width, original_height = image.size
30
 
@@ -38,18 +24,17 @@ def resize_image(image, resolution):
38
  resized_img = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
39
  return resized_img
40
 
41
- EDMEulerScheduler.set_timesteps = set_timesteps_patched
42
 
43
  vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
44
 
45
  pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file(
46
  edit_file, num_in_channels=8, is_cosxl_edit=True, vae=vae, torch_dtype=torch.float16,
47
  )
48
- pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
49
  pipe_edit.to("cuda")
50
 
51
  pipe_normal = StableDiffusionXLPipeline.from_single_file(normal_file, torch_dtype=torch.float16, vae=vae)
52
- pipe_normal.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
53
  pipe_normal.to("cuda")
54
 
55
  @spaces.GPU
 
11
  edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
12
  normal_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl.safetensors")
13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  def resize_image(image, resolution):
15
  original_width, original_height = image.size
16
 
 
24
  resized_img = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
25
  return resized_img
26
 
 
27
 
28
  vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
29
 
30
  pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file(
31
  edit_file, num_in_channels=8, is_cosxl_edit=True, vae=vae, torch_dtype=torch.float16,
32
  )
33
+ pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction", sigma_schedule="exponential")
34
  pipe_edit.to("cuda")
35
 
36
  pipe_normal = StableDiffusionXLPipeline.from_single_file(normal_file, torch_dtype=torch.float16, vae=vae)
37
+ pipe_normal.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction", sigma_schedule="exponential"s)
38
  pipe_normal.to("cuda")
39
 
40
  @spaces.GPU