cosxl / app.py
Tonic's picture
fixes 500 error for some users
48f3dab verified
raw
history blame
5.6 kB
import gradio as gr
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline, AutoencoderKL
from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
from huggingface_hub import hf_hub_download
import numpy as np
import math
from PIL import Image
edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
normal_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl.safetensors")
def resize_image(image, resolution):
original_width, original_height = image.size
if original_width > original_height:
new_width = resolution
new_height = int((resolution / original_width) * original_height)
else:
new_height = resolution
new_width = int((resolution / original_height) * original_width)
resized_img = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
return resized_img
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file(
edit_file, num_in_channels=8, is_cosxl_edit=True, vae=vae, torch_dtype=torch.float16,
)
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction", sigma_schedule="exponential")
pipe_edit.to("cuda")
pipe_normal = StableDiffusionXLPipeline.from_single_file(normal_file, torch_dtype=torch.float16, vae=vae)
pipe_normal.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction", sigma_schedule="exponential")
pipe_normal.to("cuda")
@spaces.GPU
def run_normal(prompt, negative_prompt="", guidance_scale=7, steps=20, progress=gr.Progress(track_tqdm=True)):
return pipe_normal(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=steps).images[0]
@spaces.GPU
def run_edit(image, prompt, negative_prompt="", guidance_scale=7, steps=20, progress=gr.Progress(track_tqdm=True)):
image = resize_image(image, 1024)
print("Image resized to ", image.size)
width, height = image.size
#image.resize((resolution, resolution))
return pipe_edit(prompt=prompt,image=image,height=height,width=width,negative_prompt=negative_prompt, guidance_scale=guidance_scale,num_inference_steps=steps).images[0]
css = '''
.gradio-container{
max-width: 768px !important;
margin: 0 auto;
}
'''
normal_examples = ["portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography", "backlit photography of a dog", "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece"]
edit_examples = [["mountain.png", "make it a cloudy day"], ["painting.png", "make the earring fancier"]]
with gr.Blocks(css=css) as demo:
gr.Markdown('''# CosXL demo
Unofficial demo for CosXL, a SDXL model tuned to produce full color range images. CosXL Edit allows you to perform edits on images. Both have a [non-commercial community license](https://huggingface.co/stabilityai/cosxl/blob/main/LICENSE)
''')
with gr.Tab("CosXL Edit"):
with gr.Group():
image_edit = gr.Image(label="Image you would like to edit", type="pil")
with gr.Row():
prompt_edit = gr.Textbox(show_label=False, scale=4, placeholder="Edit instructions, e.g.: Make the day cloudy")
button_edit = gr.Button("Generate", min_width=120)
output_edit = gr.Image(label="Your result image", interactive=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_edit = gr.Textbox(label="Negative Prompt")
guidance_scale_edit = gr.Number(label="Guidance Scale", value=7)
steps_edit = gr.Slider(label="Steps", minimum=10, maximum=50, value=20)
gr.Examples(examples=edit_examples, fn=run_edit, inputs=[image_edit, prompt_edit], outputs=[output_edit], cache_examples=True)
with gr.Tab("CosXL"):
with gr.Group():
with gr.Row():
prompt_normal = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt, e.g.: backlit photography of a dog")
button_normal = gr.Button("Generate", min_width=120)
output_normal = gr.Image(label="Your result image", interactive=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_normal = gr.Textbox(label="Negative Prompt")
guidance_scale_normal = gr.Number(label="Guidance Scale", value=7)
steps_normal = gr.Slider(label="Steps", minimum=10, maximum=50, value=20)
gr.Examples(examples=normal_examples, fn=run_normal, inputs=[prompt_normal], outputs=[output_normal], cache_examples="lazy")
gr.on(
triggers=[
button_normal.click,
prompt_normal.submit
],
fn=run_normal,
inputs=[prompt_normal, negative_prompt_normal, guidance_scale_normal, steps_normal],
outputs=[output_normal],
)
gr.on(
triggers=[
button_edit.click,
prompt_edit.submit
],
fn=run_edit,
inputs=[image_edit, prompt_edit, negative_prompt_edit, guidance_scale_edit, steps_edit],
outputs=[output_edit]
)
if __name__ == "__main__":
demo.launch(share=True, ssr_mode = False)