Spaces:
Running
Running
Commit
·
53b0d0a
1
Parent(s):
7950bc5
Update app.py
Browse files
app.py
CHANGED
@@ -134,7 +134,14 @@ def create_readme(info, downloaded_files, user_repo_id, link_civit=False, is_aut
|
|
134 |
|
135 |
trained_words = info['trainedWords'] if 'trainedWords' in info and info['trainedWords'] else []
|
136 |
formatted_words = ', '.join(f'`{word}`' for word in trained_words)
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
widget_content = ""
|
139 |
for index, (prompt, image) in enumerate(zip(downloaded_files["imagePrompt"], downloaded_files["imageName"])):
|
140 |
escaped_prompt = prompt.replace("'", "''")
|
@@ -169,9 +176,7 @@ widget:
|
|
169 |
|
170 |
{info["description"]}
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
You should use {formatted_words} to trigger the image generation.
|
175 |
|
176 |
## Download model
|
177 |
|
@@ -186,7 +191,7 @@ from diffusers import AutoPipelineForText2Image
|
|
186 |
import torch
|
187 |
|
188 |
pipeline = AutoPipelineForText2Image.from_pretrained('{info["baseModel"]}', torch_dtype=torch.float16).to('cuda')
|
189 |
-
pipeline.load_lora_weights('{user_repo_id}', weight_name='{downloaded_files["weightName"]}')
|
190 |
image = pipeline('{prompt if prompt else (formatted_words if formatted_words else 'Your custom prompt')}').images[0]
|
191 |
```
|
192 |
|
|
|
134 |
|
135 |
trained_words = info['trainedWords'] if 'trainedWords' in info and info['trainedWords'] else []
|
136 |
formatted_words = ', '.join(f'`{word}`' for word in trained_words)
|
137 |
+
if formatted_words:
|
138 |
+
trigger_words_section = f"""## Trigger words
|
139 |
+
|
140 |
+
You should use {formatted_words} to trigger the image generation.
|
141 |
+
"""
|
142 |
+
else:
|
143 |
+
trigger_words_section = ""
|
144 |
+
|
145 |
widget_content = ""
|
146 |
for index, (prompt, image) in enumerate(zip(downloaded_files["imagePrompt"], downloaded_files["imageName"])):
|
147 |
escaped_prompt = prompt.replace("'", "''")
|
|
|
176 |
|
177 |
{info["description"]}
|
178 |
|
179 |
+
{trigger_words_section}
|
|
|
|
|
180 |
|
181 |
## Download model
|
182 |
|
|
|
191 |
import torch
|
192 |
|
193 |
pipeline = AutoPipelineForText2Image.from_pretrained('{info["baseModel"]}', torch_dtype=torch.float16).to('cuda')
|
194 |
+
pipeline.load_lora_weights('{user_repo_id}', weight_name='{downloaded_files["weightName"][0]}')
|
195 |
image = pipeline('{prompt if prompt else (formatted_words if formatted_words else 'Your custom prompt')}').images[0]
|
196 |
```
|
197 |
|