// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. #include #include #include "bias_act.h" //------------------------------------------------------------------------ // Helpers. template struct InternalType; template <> struct InternalType { typedef double scalar_t; }; template <> struct InternalType { typedef float scalar_t; }; template <> struct InternalType { typedef float scalar_t; }; template <> struct InternalType { typedef float scalar_t; }; //------------------------------------------------------------------------ // CUDA kernel. template __global__ void bias_act_kernel(bias_act_kernel_params p) { typedef typename InternalType::scalar_t scalar_t; int G = p.grad; scalar_t alpha = (scalar_t)p.alpha; scalar_t gain = (scalar_t)p.gain; scalar_t clamp = (scalar_t)p.clamp; scalar_t one = (scalar_t)1; scalar_t two = (scalar_t)2; scalar_t expRange = (scalar_t)80; scalar_t halfExpRange = (scalar_t)40; scalar_t seluScale = (scalar_t)1.0507009873554804934193349852946; scalar_t seluAlpha = (scalar_t)1.6732632423543772848170429916717; // Loop over elements. int xi = blockIdx.x * p.loopX * blockDim.x + threadIdx.x; for (int loopIdx = 0; loopIdx < p.loopX && xi < p.sizeX; loopIdx++, xi += blockDim.x) { // Load. scalar_t x = (scalar_t)((const T*)p.x)[xi]; scalar_t b = (p.b) ? (scalar_t)((const T*)p.b)[(xi / p.stepB) % p.sizeB] : 0; scalar_t xref = (p.xref) ? (scalar_t)((const T*)p.xref)[xi] : 0; scalar_t yref = (p.yref) ? (scalar_t)((const T*)p.yref)[xi] : 0; scalar_t dy = (p.dy) ? (scalar_t)((const T*)p.dy)[xi] : one; scalar_t yy = (gain != 0) ? yref / gain : 0; scalar_t y = 0; // Apply bias. ((G == 0) ? x : xref) += b; // linear if (A == 1) { if (G == 0) y = x; if (G == 1) y = x; } // relu if (A == 2) { if (G == 0) y = (x > 0) ? x : 0; if (G == 1) y = (yy > 0) ? x : 0; } // lrelu if (A == 3) { if (G == 0) y = (x > 0) ? x : x * alpha; if (G == 1) y = (yy > 0) ? x : x * alpha; } // tanh if (A == 4) { if (G == 0) { scalar_t c = exp(x); scalar_t d = one / c; y = (x < -expRange) ? -one : (x > expRange) ? one : (c - d) / (c + d); } if (G == 1) y = x * (one - yy * yy); if (G == 2) y = x * (one - yy * yy) * (-two * yy); } // sigmoid if (A == 5) { if (G == 0) y = (x < -expRange) ? 0 : one / (exp(-x) + one); if (G == 1) y = x * yy * (one - yy); if (G == 2) y = x * yy * (one - yy) * (one - two * yy); } // elu if (A == 6) { if (G == 0) y = (x >= 0) ? x : exp(x) - one; if (G == 1) y = (yy >= 0) ? x : x * (yy + one); if (G == 2) y = (yy >= 0) ? 0 : x * (yy + one); } // selu if (A == 7) { if (G == 0) y = (x >= 0) ? seluScale * x : (seluScale * seluAlpha) * (exp(x) - one); if (G == 1) y = (yy >= 0) ? x * seluScale : x * (yy + seluScale * seluAlpha); if (G == 2) y = (yy >= 0) ? 0 : x * (yy + seluScale * seluAlpha); } // softplus if (A == 8) { if (G == 0) y = (x > expRange) ? x : log(exp(x) + one); if (G == 1) y = x * (one - exp(-yy)); if (G == 2) { scalar_t c = exp(-yy); y = x * c * (one - c); } } // swish if (A == 9) { if (G == 0) y = (x < -expRange) ? 0 : x / (exp(-x) + one); else { scalar_t c = exp(xref); scalar_t d = c + one; if (G == 1) y = (xref > halfExpRange) ? x : x * c * (xref + d) / (d * d); else y = (xref > halfExpRange) ? 0 : x * c * (xref * (two - d) + two * d) / (d * d * d); yref = (xref < -expRange) ? 0 : xref / (exp(-xref) + one) * gain; } } // Apply gain. y *= gain * dy; // Clamp. if (clamp >= 0) { if (G == 0) y = (y > -clamp & y < clamp) ? y : (y >= 0) ? clamp : -clamp; else y = (yref > -clamp & yref < clamp) ? y : 0; } // Store. ((T*)p.y)[xi] = (T)y; } } //------------------------------------------------------------------------ // CUDA kernel selection. template void* choose_bias_act_kernel(const bias_act_kernel_params& p) { if (p.act == 1) return (void*)bias_act_kernel; if (p.act == 2) return (void*)bias_act_kernel; if (p.act == 3) return (void*)bias_act_kernel; if (p.act == 4) return (void*)bias_act_kernel; if (p.act == 5) return (void*)bias_act_kernel; if (p.act == 6) return (void*)bias_act_kernel; if (p.act == 7) return (void*)bias_act_kernel; if (p.act == 8) return (void*)bias_act_kernel; if (p.act == 9) return (void*)bias_act_kernel; return NULL; } //------------------------------------------------------------------------ // Template specializations. template void* choose_bias_act_kernel (const bias_act_kernel_params& p); template void* choose_bias_act_kernel (const bias_act_kernel_params& p); template void* choose_bias_act_kernel (const bias_act_kernel_params& p); template void* choose_bias_act_kernel (const bias_act_kernel_params& p); //------------------------------------------------------------------------