// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. // // NVIDIA CORPORATION and its licensors retain all intellectual property // and proprietary rights in and to this software, related documentation // and any modifications thereto. Any use, reproduction, disclosure or // distribution of this software and related documentation without an express // license agreement from NVIDIA CORPORATION is strictly prohibited. #include #include #include #include "bias_act.h" //------------------------------------------------------------------------ static bool has_same_layout(torch::Tensor x, torch::Tensor y) { if (x.dim() != y.dim()) return false; for (int64_t i = 0; i < x.dim(); i++) { if (x.size(i) != y.size(i)) return false; if (x.size(i) >= 2 && x.stride(i) != y.stride(i)) return false; } return true; } //------------------------------------------------------------------------ static torch::Tensor bias_act(torch::Tensor x, torch::Tensor b, torch::Tensor xref, torch::Tensor yref, torch::Tensor dy, int grad, int dim, int act, float alpha, float gain, float clamp) { // Validate arguments. TORCH_CHECK(x.is_cuda(), "x must reside on CUDA device"); TORCH_CHECK(b.numel() == 0 || (b.dtype() == x.dtype() && b.device() == x.device()), "b must have the same dtype and device as x"); TORCH_CHECK(xref.numel() == 0 || (xref.sizes() == x.sizes() && xref.dtype() == x.dtype() && xref.device() == x.device()), "xref must have the same shape, dtype, and device as x"); TORCH_CHECK(yref.numel() == 0 || (yref.sizes() == x.sizes() && yref.dtype() == x.dtype() && yref.device() == x.device()), "yref must have the same shape, dtype, and device as x"); TORCH_CHECK(dy.numel() == 0 || (dy.sizes() == x.sizes() && dy.dtype() == x.dtype() && dy.device() == x.device()), "dy must have the same dtype and device as x"); TORCH_CHECK(x.numel() <= INT_MAX, "x is too large"); TORCH_CHECK(b.dim() == 1, "b must have rank 1"); TORCH_CHECK(b.numel() == 0 || (dim >= 0 && dim < x.dim()), "dim is out of bounds"); TORCH_CHECK(b.numel() == 0 || b.numel() == x.size(dim), "b has wrong number of elements"); TORCH_CHECK(grad >= 0, "grad must be non-negative"); // Validate layout. TORCH_CHECK(x.is_non_overlapping_and_dense(), "x must be non-overlapping and dense"); TORCH_CHECK(b.is_contiguous(), "b must be contiguous"); TORCH_CHECK(xref.numel() == 0 || has_same_layout(xref, x), "xref must have the same layout as x"); TORCH_CHECK(yref.numel() == 0 || has_same_layout(yref, x), "yref must have the same layout as x"); TORCH_CHECK(dy.numel() == 0 || has_same_layout(dy, x), "dy must have the same layout as x"); // Create output tensor. const at::cuda::OptionalCUDAGuard device_guard(device_of(x)); torch::Tensor y = torch::empty_like(x); TORCH_CHECK(has_same_layout(y, x), "y must have the same layout as x"); // Initialize CUDA kernel parameters. bias_act_kernel_params p; p.x = x.data_ptr(); p.b = (b.numel()) ? b.data_ptr() : NULL; p.xref = (xref.numel()) ? xref.data_ptr() : NULL; p.yref = (yref.numel()) ? yref.data_ptr() : NULL; p.dy = (dy.numel()) ? dy.data_ptr() : NULL; p.y = y.data_ptr(); p.grad = grad; p.act = act; p.alpha = alpha; p.gain = gain; p.clamp = clamp; p.sizeX = (int)x.numel(); p.sizeB = (int)b.numel(); p.stepB = (b.numel()) ? (int)x.stride(dim) : 1; // Choose CUDA kernel. void* kernel; AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, x.scalar_type(), "upfirdn2d_cuda", [&] { kernel = choose_bias_act_kernel(p); }); TORCH_CHECK(kernel, "no CUDA kernel found for the specified activation func"); // Launch CUDA kernel. p.loopX = 4; int blockSize = 4 * 32; int gridSize = (p.sizeX - 1) / (p.loopX * blockSize) + 1; void* args[] = {&p}; AT_CUDA_CHECK(cudaLaunchKernel(kernel, gridSize, blockSize, args, 0, at::cuda::getCurrentCUDAStream())); return y; } //------------------------------------------------------------------------ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("bias_act", &bias_act); } //------------------------------------------------------------------------