Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import copy | |
import R3GAN.Networks | |
class Generator(nn.Module): | |
def __init__(self, *args, **kw): | |
super(Generator, self).__init__() | |
config = copy.deepcopy(kw) | |
del config['FP16Stages'] | |
del config['c_dim'] | |
del config['img_resolution'] | |
if kw['c_dim'] != 0: | |
config['ConditionDimension'] = kw['c_dim'] | |
self.Model = R3GAN.Networks.Generator(*args, **config) | |
self.z_dim = kw['NoiseDimension'] | |
self.c_dim = kw['c_dim'] | |
self.img_resolution = kw['img_resolution'] | |
for x in kw['FP16Stages']: | |
self.Model.MainLayers[x].DataType = torch.bfloat16 | |
def forward(self, x, c): | |
return self.Model(x, c) | |
class Discriminator(nn.Module): | |
def __init__(self, *args, **kw): | |
super(Discriminator, self).__init__() | |
config = copy.deepcopy(kw) | |
del config['FP16Stages'] | |
del config['c_dim'] | |
del config['img_resolution'] | |
if kw['c_dim'] != 0: | |
config['ConditionDimension'] = kw['c_dim'] | |
self.Model = R3GAN.Networks.Discriminator(*args, **config) | |
for x in kw['FP16Stages']: | |
self.Model.MainLayers[x].DataType = torch.bfloat16 | |
def forward(self, x, c): | |
return self.Model(x, c) |